Author Archives: Robert Muir-Wood

About Robert Muir-Wood

Chief Research Officer, RMS
Robert Muir-Wood works to enhance approaches to natural catastrophe modeling, identify models for new areas of risk, and explore expanded applications for catastrophe modeling. Recently, he has been focusing on identifying the potential locations and consequences of magnitude 9 earthquakes worldwide. In 2012, as part of Mexico's presidency of the G20, he helped promote government usage of catastrophe models for managing national disaster risks. Robert has more than 20 years of experience developing probabilistic catastrophe models. He was lead author for the 2007 IPCC 4th Assessment Report and 2011 IPCC Special Report on Extremes, is a member of the Climate Risk and Insurance Working Group for the Geneva Association, and is vice-chair of the OECD panel on the Financial Consequences of Large Scale Catastrophes. He is the author of six books, as well as numerous papers and articles in scientific and industry publications. He holds a degree in natural sciences and a PhD in Earth sciences, both from Cambridge University.

The Case of the Trapped Collateral

Was Hurricane Irma in Florida a fire drill for the insurance-linked securities (ILS) and collateralized reinsurance markets — or was this the real thing? In terms of losses, what happened is at the lower end of what the Irma loss in Florida could have become. But what if some of the stuffing had not been knocked out of the storm in Cuba, and if Irma had landed on either the east or west Florida coasts instead of lumbering into the Everglades?

If Irma was a fire drill, then one topic it has highlighted is that faced by “trapped collateral”.

Continue reading

Looking Beyond the Catch-all “Cyber” Category

The mass production of the internal combustion engine facilitated many new kinds of insurable damage and loss. It also provided opportunities to extend and expand older forms of crime. Before cars, robbers were reduced to committing burglary within their own town or village, potentially aided by a speedy horse. Cars took these crimes to a new level. Cars facilitated “smash-and-grab” raids on banks, and kidnap and ransom, grabbing the unfortunate victim on the street and hustling them into the back of the car. Cars facilitated rapid getaway after any kind of attack, whatever the motivation — sabotage, vandalism, revenge. And that is before all the causes of loss associated with cars themselves, such as hit-and-run, manslaughter, dangerous driving, or speeding.

The term “car crime” relates specifically to the robbery of the car or its contents, or otherwise damaging the car — we would not consider lumping together all these different ways in which the car has facilitated losses and crimes under a single heading.

So why does it make sense to lump together all those varieties of crime and loss facilitated by another quantum leap in communications, through computing and the Internet? Because that is what we currently do when it comes to the use of the catch-all term “cyber”.

Continue reading

How Can We “Build Back Better” After the Disaster?

Although tragic for everyone involved, some good can come from a devastating disaster as it does provide a unique opportunity to transform the building stock, and to “build back better”. Typically, many structures will have been demolished, or need to be removed. There will also be funding, whether it is via insurance payments, assistance grants and even international aid, to help support improvements. From an island in the Caribbean to a city in central Mexico, we could now institute these profound upgrades, so that for any repeat earthquake or hurricane, the damage and losses will be much reduced. Ironically, a disaster creates the best of all times to make improvements.

There is one small problem.

Continue reading

Doing Business With a Better High Definition Flood Model: From Flood Re to Harvey

When we set out to design the latest generation RMS High Definition (HD) flood loss models we identified five key challenges:

a) Resolution: Neighboring properties separated by a few feet in elevation can have dramatically different flood risk costs. However, the finer the model resolution, the bigger the hazard and loss files — and the slower the modeling. We needed an objective way of determining the best trade-offs around model resolution.

b) Duration: Once groundwater levels are raised, more precipitation can set off another round of flooding. The climatology can persist, bringing;

  • a succession of storms on the same path, or
  • a fixed long lasting atmospheric river, or
  • a procession of rain bands from a stalled circulation parked at the coast as from Hurricane Harvey.

Flooding episodes can endure for days and weeks, but reinsurers want a predetermined definition of event duration. The model needed to provide the flexibility to explore how event duration affects results.

Continue reading

The Politics of Basis Risk

Imagine you are a government minister responsible for disaster response. Five days have passed since the hurricane hit your country, and the floods have still not receded. Tens of thousands of your citizens have been made homeless. In the eyes of the people, the government is simply moving too slowly, and the press is baying for action. There is some reassurance though, as you know that over many years your country has paid premium into an international pooling scheme designed to provide substantial funds quickly when such a disaster strikes, to help pay some of the costs of recovery.

But then you hear from the regional multi-state insurance pool to which your finance minister has been contributing hard-fought annual premiums for the past decade. Your country is not going to receive a pay-out. In the scheme’s parametric formula, the value is below the threshold. You have discovered the toxic politics of basis risk.

Continue reading

The Hurricane Hunter and the Cat Bond

The second Mexico multi-cat securitization was launched at the end of 2012 to provide reinsurance for the Fund for Natural Disasters (FONDEN) – established by the Mexican federal government as a disaster fund for the poor, which also finances disaster-damaged infrastructure. This three-year bond had a series of tranches covering earthquake or hurricane, each to be triggered by parametric “cat-in-a-box” structures. For one hurricane tranche, this was based on the central pressure of a storm passing into a large “box” drawn around the Pacific coasts of Mexico and Baja California, with the length of the box spanning well over a thousand miles. With a “U.S. National Hurricane Center (NHC) ratified” hurricane central pressure in the box of 920 millibars (mb) or lower there would be a 100 percent payout or $100 million; for a central pressure of 932 mb to 920 mb a 50 percent payout of $50 million.

Continue reading

Is Property Cat “The Next Asbestos?”

For Texas, it all began with Hurricane Ike in 2008. In the run-up and during the global financial crisis, between September 2006 and the last quarter of 2008, 780,000 jobs disappeared in the U.S. construction sector. Following Ike, with its generally modest levels of damage across a wide area, “two men in a pickup” teams turned up to get homeowners to sign “Assignment of Benefits” (AOB) forms. A signed AOB form gave repairers responsibility for dealing with the insurer over the claim, and the right to pass the case onto a lawyer assembling a class action lawsuit.

The original idea of contractors sourcing AOBs may have emerged after the 2004-2005 hurricanes in Florida, when lawyer Harvey V Cohen of Cohen Grossman met with restoration contractors to encourage them to employ “Assignment of Benefits” forms so they would deal directly with the insurance company for their payments.

Continue reading

How Does an Apartment Fire Turn Into a Catastrophe?

It would be hard to find a simpler example of a catastrophe. Details are emerging that the overall plan for managing fire risk in the 24-storey Grenfell Tower in North Kensington, London, centered on the assumption that as each of the 120 apartments in the tower block had a fire door, any fire would be contained long enough for the fire service to arrive. Meanwhile all those living in the unaffected apartments could conduct an orderly evacuation from the building. As a concrete building, with concrete floors and walls, it would be hard for a fire to spread. Continue reading

The Impact of Insurance on Claiming

The term “observer effect” in physics refers to how the act of making an observation changes the state of the system. To measure the pressure in a tire you have to let out some air. Measure the spin of an electron and it will change its state.

There is something similar about the “insurer effect” in catastrophe loss. If insurance is in place, the loss will be higher than if there is no insurer. We see this effect in many areas of insurance, but now the “insurer effect” factor is becoming an increasing contributor to disaster losses. In the U.S., trends in claiming behavior are having a bigger impact on catastrophe insurance losses than climate change.

Continue reading

Has That Oilfield Caused My Earthquake?

“Some six months have passed since the magnitude (Mw) 6.7 earthquake struck Los Angeles County, with an epicenter close to the coast in Long Beach. Total economic loss estimates are more than $30 billion.  Among the affected homeowners, the earthquake insurance take-up rates were pitifully low – around 14 percent. And even then, the punitive deductibles contained in their policies means that homeowners may only recover 20 percent of their repair bills.  So, there is a lot of uninsured loss looking for compensation. Now there are billboards with pictures of smiling lawyers inviting disgruntled homeowners to become part of class action lawsuits, directed at several oilfield operators located close to the fault. For there is enough of an argument to suggest that this earthquake was triggered by human activities.”   

This is not a wild hypothesis with little chance of establishing liability, or the lawyers would not be investing in the opportunity. There are currently three thousand active oil wells in Los Angeles County. There is even an oil derrick in the grounds of Beverly Hills High School. Los Angeles County is second only to its northerly neighbor Kern County in terms of current levels of oil production in California.  In 2013, the U.S. Geological Survey (USGS) estimated there were 900 million barrels of oil still to be extracted from the coastal Wilmington Field which extends for around six miles (10 km) around Long Beach, from Carson to the Belmont Shore.

Beverly Hills High School Picture Credit: Sarah Craig for Faces of Fracking / FLICKR

Beverly Hills High School   Picture Credit: Sarah Craig for Faces of Fracking / FLICKR

However, the Los Angeles oil boom was back in the 1920s when most of the large fields were first discovered. Two seismologists at the USGS have now searched back through the records of earthquakes and oil field production – and arrived at a startling conclusion. Many of the earthquakes during this period appear to have been triggered by neighboring oil field production.

The Mw4.9 earthquake of June 22, 1920 had a shallow source that caused significant damage in a small area just a mile to the west of Inglewood. Local exploration wells releasing oil and gas pressures had been drilled at this location in the months before the earthquake.

A Mw4.3 earthquake in July 1929 at Whittier, some four miles (6 km) southwest of downtown Los Angeles, had a source close to the Santa Fe Springs oil field; one of the top producers through the 1920s, a field which had been drilled deeper and had a production boom in the months leading up to the earthquake.

A Mw5 earthquake occurred close to Santa Monica on August 31, 1930, in the vicinity of the Playa del Rey oilfield at Venice, California, a field first identified in December 1929 with production ramping up to four million barrels over the second half of 1930.

The epicenter of the Mw6.4 1933 Long Beach earthquake, on the Newport-Inglewood Fault was in the footprint of the Huntingdon Beach oilfield at the southern end of this 47 mile-long (75 km) fault.

As for a mechanism – the Groningen gas field in the Netherlands, shows how earthquakes can be triggered simply by the extraction of oil and gas, as reductions in load and compaction cause faults to break.

More Deep Waste Water Disposal Wells in California than Oklahoma

Today many of the Los Angeles oilfields are being managed through secondary recovery – pumping water into the reservoir to flush out the oil. In which case, we have an additional potential mechanism to generate earthquakes – raising deep fluid pressures – as currently experienced in Oklahoma. And Oklahoma is not even the number one U.S. state for deep waste water disposal. Between 2010 and 2013 there were 9,900 active deep waste water disposal wells in California relative to 8,600 in Oklahoma. And the California wells tend to be deeper.

More than 75 percent of the state’s oil production and more than 80 percent of all injection wells are in Kern County, central California, which happens to be close to the largest earthquake in the region over the past century on the White Wolf Fault: Mw7.3 in 1952. In 2005, there was an abrupt increase in the rates of waste water injection close to the White Wolf Fault, which was followed by an unprecedented swarm of four earthquakes over Magnitude 4 on the same day in September 2005. The injection and the seismicity have been linked in a research paper by Caltech and University of Southern California seismologists published in 2016. One neighboring well, delivering 57,000 cubic meters of waste water each month, was started just five months before the earthquake swarm broke out. The seismologists found a smoking gun, a pattern of smaller shocks migrating from the site of the well to the location of the earthquake cluster.

To summarize – we know that raising fluid pressures at depth can cause earthquakes, as is the case in Oklahoma, and also in Kern County, CA. We know there is circumstantial evidence for a connection between specific damaging earthquakes and oil extraction in southern California in the 1920s and 1930s. According to the location of the next major earthquake in southern or central California, there is a reasonable probability there will be an actively managed oilfield or waste water well in the vicinity.

Whoever is holding the liability cover for that operator may need some deep pockets.