Tag Archives: Indonesia Earthquake

The Problem of Real and Unreal Tsunamis

Indonesia was beset by disasters in 2018, including two high casualty local tsunamis: in coastal western Sulawesi – impacting the city of Palu, on September 28, and around the Sunda Strait, between Java and Sumatra, on December 22. These events may have appeared unusual, but the great subduction zone tsunamis, like those in the Indian Ocean in 2004 and Japan in 2011, have reset our imagination. Before 2004, forty years had passed without any transoceanic tsunamis. Overall, local tsunamis are more common, presenting many challenges in how they can be anticipated.

The Palu tsunami reminds us how “strike-slip” faults, involving only horizontal displacement can still generate tsunamis, first as a result of vertical displacement at “jogs”, where the fault rupture jumps alignment, as well as from triggered submarine landslides. It seems both factors were important in driving the Sulawesi tsunami that became amplified to more than four meters (13 feet) in the funnel-shaped Palu embayment.

The December 22 Sunda Strait tsunami was caused by a submarine landslide on the erupting Anak Krakatoa volcano and arrived without warning, in the dark of mid-evening. More than 400 people drowned mainly around a series of beach resorts in Banten and Lampung provinces, although water levels in the tsunami only reached a meter or two above sea level. An audience of 200 enjoying a concert at the Tanjung Lesung Beach Resort, staged directly on the beach by Indonesian rock band Seventeen were caught unaware. 29 concertgoers were killed together with four people associated with the band.

Continue reading

Ultra-liquefaction Changes Everything

It turns out the biggest killer in the Palu earthquake on the island of Sulawesi, Indonesia, may not have been the tsunami after all — but liquefaction. Two thousand victims of the earthquake and tsunami are confirmed but 5,000 people remain missing, many of them presumed swallowed up in extraordinary ground deformation and mudflows, which took off when the underlying solid ground liquefied. Some buildings were transported hundreds of meters, others were ripped apart, many collapsed into fragments that then became absorbed into the mud. Media reports state that in Balaroa, just a few kilometers from Palu City, many of the 1,747 houses in the village appear to have sunk into the earth. In Petobo, a village to the east of Palu, many of the village’s 744 houses have disappeared.

What we have witnessed at Palu merits the term “ultra-liquefaction”, as witnessed in the 2011 Christchurch, New Zealand earthquake when perhaps half the total insurance loss costs were a consequence of liquefaction. For Christchurch, in the eastern suburbs it was single storey houses, ripped apart by the ground movements. In the Central Business District (CBD), many mid-rise buildings had to be demolished because underlying liquefaction had led to one corner of the structure sinking by ten or twenty centimeters (four to eight inches).

Continue reading

The Tragedy at Palu

A version of this article was originally published in Insurance Day

The Mw7.5 earthquake in Sulawesi, Indonesia on September 28 reminds us that fourteen years after the terrible Indian Ocean tsunami, and despite significant investment in systems intended to provide tsunami warnings, the risk to life and property is not going away. To understand why the destruction and loss of life in the city of Palu, with a population of 350,000, is so great (1,300 and rising) we need to understand why this location has proved such a nexus of vulnerabilities.

First, Palu is located less than one degree south of the equator. That means it is in the “shadow zone” for tropical cyclones. In most of the world’s oceans, no tropical cyclone can exist within ten degrees of the equator, although in the western Pacific the typhoon exclusion zone can narrow down to six to eight degrees from the equator. The lack of Coriolis force at the equator prevents a collection of thunderstorms gaining a structured rotation (and tropical cyclones spin in opposite directions in the northern and southern hemispheres).

The lack of tropical cyclones means there are no significant storm surges, or even much in the way of significant wind-driven waves, and as a result people build their houses right down to sea level. This means, in comparison even with a coastal city in Philippines or China, there were many more seafront buildings exposed to a tsunami that reached no more than three to five meters above sea level.

Continue reading