Tag Archives: hurricane katrina

The Age of Innocence

Professor Ilan Noy holds a unique ”Chair in the Economics of Disasters” at the Victoria University of Wellington, New Zealand. He has proposed in a couple of research papers that instead of counting disaster deaths and economic costs, we should report the “expected life-years” lost, not only for human casualties but also for the life-years of work that will be required to repair all the damage to buildings and infrastructure.

The idea is based on the World Health Organization’s Disability Adjusted Life Years (DALYs) lost through disease and injury (WHO 2013). The motivation is to escape from the distortion introduced by measuring the impact of global disasters in dollars, as loss from the richest countries will always dominate this metric. Noy’s proposal converts injuries into life-years lost, based on how long it takes for the injured to return to complete health, while also factoring the degree of permanent disability multiplied by its duration. This is topped up by a “welfare reduction weight” for all those exposed to a disaster. The final component of the index attempts to capture how many years of human endeavor is lost to recovering the buildings and assets destroyed in the disaster.

There is plenty to argue over in terms of how deaths, injury and damage should be combined. In particular, the assumption that additional work to rebuild a city, is the same as a shortened life, seems somewhat reductive.

Continue reading

Will California be “Puerto Rico” or “New Orleans”?

It is now exactly a quarter of a century, on January 17, 1994, since the last significant U.S. earthquake disaster. A previously unknown blind thrust ruptured beneath Northridge, in the San Fernando Valley north of Los Angeles. Casualties were fortunately modest (57 deaths) because the Mw6.7 shock happened at 4.30 a.m. local time, but the damage was significant – estimated as at least US$30 billion in 1994 prices, as the fault lay directly underneath the city.

Sooner or later California will experience another Mw6.7-7.5 earthquake disaster, in the highly populated San Francisco Bay Area or under sprawling greater Los Angeles. Year-on-year, while the probability rises, the proportion of the affected population with any previous disaster experience dwindles. When it happens, in all senses of the word – it will be a great shock.

One prediction is inevitable: after the next big Bay Area or LA earthquake, there will be large numbers of uninsured homeowners, landlords and small business owners looking for compensation. Given the high deductible and low take-up rates for earthquake insurance, as much as 90 percent of the residential losses will not be covered by insurance payouts: a far higher percentage than in 1994.

And the question is then, will the Federal Government response match that which followed Hurricane Maria, or can we expect it to be more like the aftermath of Hurricane Katrina. Or to put it another way: will California be “Puerto Rico” or “New Orleans”?

Continue reading

Coastal Flood: Rising Risk in New Orleans and Beyond

As we come up on the tenth anniversary of Hurricane Katrina, a lot of the focus is on New Orleans. But while New Orleans is far from being able to ignore its risk, it’s not the most vulnerable to coastal flood. RMS took a look at six coastal cities in the United States to evaluate how losses from storm surge are expected to change from the present day until 2100 and found that cities such as Miami, New York, and Tampa face greater risk of economic loss from storm surge.

To evaluate risk, we compared the likelihood of each city sustaining at least $15 billion in economic losses from storm surge – the amount of loss that would occur if the same area of Orleans Parish was flooded today as was flooded in 2005. What we found is that while New Orleans still faces significant risk, with a 1-in-440 chance of at least $15 billion in storm surge losses this year, the risk is 1-in-200 in New York, 1-in-125 in Miami, and 1-in-80 in Tampa.

Looking ahead to 2100, those chances increase dramatically. The chance of sustaining at least $15 billion in storm surge losses in 2100 rises to 1-in-315 in New Orleans, 1-in-45 in New York, and 1-in-30 in both Miami and Tampa.

Due to flood defences implemented since 2005, the risk in New Orleans is not as dramatic as you might think compared to other coastal cities evaluated. However, the Big Easy is faced with another problem in addition to rising sea levels – the city itself is sinking. In fact, it’s sinking faster than sea levels are rising, meaning flood heights are rising faster than any other city along the U.S. coast.

Our calculations regarding the risk in New Orleans were made on the assumption that flood defences are raised in step with water levels. If mitigation efforts aren’t made, the risk will be considerably higher.

And, there is considerable debate within the scientific community over changing hurricane frequency. As risk modelers, we take a measured, moderate approach, so we have not factored in potential changes in frequency into our calculations as there is not yet scientific consensus. However, some take the view that frequency is changing, which would also affect the expected future risk.

What’s clear is it’s important to understand changing risk as storm surge continues to contribute a larger part of hurricane losses.

From Arlene to Zeta: Remembering the Record-Breaking 2005 Atlantic Hurricane Season

Few in the insurance industry can forget the Atlantic hurricane season of 2005. For many, it is indelibly linked with Hurricane Katrina and the flooding of New Orleans. But looking beyond these tragic events, the 2005 season was remarkable on many levels, and the facts are just as compelling in 2015 as they were a decade ago.

In the months leading up to June 2005, the insurance industry was still evaluating the impact of a very active season in 2004. Eight named storms made landfall in the United States and the Caribbean (Mexico was spared), including four major hurricanes in Florida over a six-week period. RMS was engaged in a large 2004-season claims evaluation project as the beginning of the 2005 season approached.

An Early Start

The season got off to a relatively early start with the first named storm—Arlene—making landfall on June 8 as a strong tropical storm in the panhandle of Florida. Three weeks later, the second named storm—Bret—made landfall as a weak tropical storm in Mexico. Although higher than the long-term June average of less than one named storm, June 2005 raised no eyebrows.

July was different.

Climatologically speaking, July is usually one of the quietest months of the entire season, with the long-term average number of named storms at less than one. But in July 2005, there were no fewer than five named storms, three of which were hurricanes. Of these, two—Dennis and Emily—were major hurricanes, reaching categories 4 and 5 on the Saffir-Simpson Hurricane Scale. Dennis made landfall on the Florida panhandle, and Emily made landfall in Mexico. This was the busiest July on record for tropical cyclones.

The Season Continued to Rage

In previous years when there was a busy early season, we comforted ourselves by remembering that there was no correlation between early- and late-season activity. Surely, we thought, in August and September things would calm down. But, as it turned out, 10 more named storms occurred by the end of September—five in each month—including the intense Hurricane Rita and the massively destructive Hurricane Katrina.

In terms of the overall number of named storms, the season was approaching record levels of activity—and it was only the end of September! As the industry grappled with the enormity of Hurricane Katrina’s devastation, there were hopes that October would bring relief. However, it was not to be.

Seven more storms developed in October, including Hurricane Wilma, which had the lowest-ever pressure for an Atlantic hurricane (882 mb) and blew though the Yucatan Peninsular as a category 5 hurricane. Wilma then made a remarkable right turn and a second landfall (still as a major hurricane) in southwestern Florida, maintaining hurricane strength as it crossed the state and exited into the Atlantic near Miami and Fort Lauderdale.

We were now firmly in record territory, surpassing the previous most-active season in 1933. The unthinkable had been achieved: The season’s list of names had been exhausted. October’s last two storms were called Alpha and Beta!

Records Smashed

Four more storms were named in November and December, bringing the total for the year to 28 (see Figure 1). By the time the season was over, the Atlantic, Caribbean and Gulf of Mexico had been criss-crossed by storms (see Figure 2), and many long-standing hurricane-season records were shattered: the most named storms, the most hurricanes, the highest number of major hurricanes, and the highest number of category 5 hurricanes (see Table 1). It was also the first time in recorded history that more storms were recorded in the Atlantic than in the western North Pacific basin. In total, the 2005 Atlantic hurricane season caused more than $90 billion in insured losses (adjusted to 2015 dollars).

The 2005 Atlantic Hurricane Season: The Storm Before the Calm

The 2005 season was, in some ways, the storm before the current calm in the Atlantic, particularly as it has affected the U.S. No major hurricane has made landfall in the U.S. since 2005. That’s not to say that major hurricanes have not developed in the Atlantic or that damaging storms haven’t happened—just look at the destruction wreaked by Hurricane Ike in 2008 (over $13 billion in today’s dollars) and by Superstorm Sandy in 2012, which caused more than $20 billion in insured losses. We should not lower our guard.


Figure 1: Number of named storms by month during the 2005 Atlantic hurricane season

Table 1: Summary of the number of named storms in the Atlantic hurricane basin in 2005 and average season activity through 2014
* Accumulated Cyclone Energy (ACE): a measure of the total energy in a hurricane season based on number of storms, duration, and intensity


Figure 2: Tracks of named storms in the 2005 Atlantic hurricane season