Tag Archives: Risky Business

Water, Water Everywhere: The Effect of Climate Change on Florida

Climate change has been a hot topic in Florida for quite some time. Just last week, President Obama visited the Everglades to discuss the need to address climate change now.

RMS partnered with the Risky Business Initiative to quantify and publicize the economic risks the United States faces from the impacts of a changing climate. In Florida, there is a 1% chance that by 2100, 17% of current Florida property value will be underwater, causing a $20.7 billion increase in annual flooding losses, and $681 billion worth of property loss due to sea level rise.

Bob Correll, principal at the Global Environment Technology Foundation leading the Center for Energy and Climate Solutions: Just last week a report commissioned by the G7 was released to the foreign ministers, including Secretary of State John Kerry, titled “A New Climate for Peace: Taking Action on Climate and Fragility Risk.” It outlines seven things we need to worry about as the changing climate becomes more evident, including sea-level rise and coastal degradation.

Brian Soden, atmospheric sciences professor, University of Miami: Sea level rise is the impact of climate change that I’m most worried about. The rate of sea level rise has almost doubled in Miami over the past decade. We are the canary in the coal mine. If you increase sea level by just three feet, which is in the middle of the range of projections, the Everglades would pretty much be gone.

Robert Muir-Wood, chief research officer, RMS: At RMS we attempt to be completely objective about risk. We attempt to take the full scientific understanding and translate it into information about risk and the associated cost. Financial markets are smart. Future risk is already starting to affect the current value of property.

Matthew Nielson, senior director of global governmental and regulatory affairs, RMS: Regulations generally fall into two buckets: curbing emissions so we can temper this problem and thinking about future development and planning to account for future sea level rise.

But what do we do now? There are a lot of things to think about – one is drainage issues. Another is access to fresh water.

Paul Wilson, senior director of model development and lead modeler for the Risky Business Initiative, RMS: It will be interesting to see how things play out – if the response will come as a result of science and gradual sea level rise, or only after a major catastrophe.

Muir-Wood: It’s very hard for communities to take action until they’ve had a disaster. As we’ve seen with Hurricane Katrina and Superstorm Sandy, suddenly there’s all sorts of enlightened thinking about future risk, such as investments in sea defenses. Unfortunately, it often takes a catastrophe to impact on decisions about mitigating risk.

Paul VanderMarck, chief products officer, RMS: You can only build a sea wall so high before it’s not worth living here anymore.

Soden: The biggest question I ask myself is “when do I sell?”

Correll: A year ago the WEF came to us and asked if we would be willing to work with their young global leaders. We had the head of all Shell operations in the Middle East. We had the former head of GE operations in India. They are getting the message. They walked away saying, “we need to rethink our business plans to plan for the future.”

Modeling provides a lot of the underpinnings to make decisions that are outside of the norm. The past is no longer a prologue to the future.

Rising Storm Surge Losses in the U.S. Northeast

Co-authored by Anaïs Katz and Oliver Withers, analysts, Capital Market Solutions, RMS

A recent article in Nature Communications, picked up by the BBC, identified a record mean sea-level rise of 5” (127mm) along the coastline north of New York City during 2009-10. Sea levels fluctuate between years; a swing of this size, however, was unprecedented.

This extreme rise in 2009-2010 has been attributed to the downturn of a major current called the Atlantic meridional overturning circulation (AMOC). As changes to sea levels are sensitive to multiple factors, there is volatility around this increase. The AMOC is one of the ocean’s dynamics that is known to have greatly changed over time. It has been shown that weakening and variation of the AMOC is linked to increases of greenhouse gas emissions.

Sea level rise is one of the most tangible and certain consequences of a warmer climate. Climate models suggest that even if greenhouse gas emissions were reduced sea levels will continue to increase. Such a dramatic fluctuation, as seen in 2009-10, highlights the potential for significantly elevated storm surge risk in the region and raises the question what will the impact of future long-term sea-level rise have on storm risk.

A study by Kopp et al. has attempted to predict probability bands for sea rise. The figure below shows the distribution of expected sea-level rise at New York City’s Battery Park throughout the 21st century. The 50th percentile projection of sea level rise is represented as the red line in the figure. Also shown are the maximum rises in sea levels associated with previous hurricane storm surges.

Based on RMS’ estimate of the impacts from hurricanes on residential and commercial property in the Northeast US (from New Jersey north), the 2010 estimate of storm surge contribution to hurricane losses is about 10%. Even where the activity of hurricanes does not change, sea level rise will increase the damage associated with hurricane storm surges. Based on Kopp’s estimates of sea level rise, by 2100 surge losses would contribute about 25% of total hurricane losses.

The largest recent hurricane loss occurred on October 29th 2012, when Superstorm Sandy made landfall near Atlantic City, NJ. Based on the RMS best loss estimate, Sandy caused insured losses between $20 and $25 billion, with much of the damage due to storm surge, not wind.

In terms of a simple extreme value analysis, the storm surge caused by Superstorm Sandy combined with the tide at New York City’s Battery Park was approximately a 1-in-450 year return period for that location. Based on sea level rise alone, this surge and tide combination at this location would move closer to a 1-in-100 year event by the end of the century. The figure below shows the return periods for a storm surge as high as Sandy’s occurring at New York City’s Battery Park, under different sea-level assumptions.

A direct result of increasing amounts of greenhouse gases in the atmosphere will be an increase in sea surface temperatures. While increased sea surface temperatures are likely to cause changes to the activities and intensities of hurricanes, there is no consensus among climate modelers as to the magnitude and direction of these changes. For this reason, the figure below does not consider potential changes in hurricane activity, but focuses solely on sea-level rise, for which there is much more of a general agreement.

While the impacts of climate change remain much debated, changes in loss potential will have material effects on the risk to insurers. With the appreciation of the significance of climate change coming to the fore, the next decades will pose a research challenge for the insurance industry, as to how to incorporate evidence for changes in the level of risk.

This post was co-authored by Anaïs Katz and Oliver Withers. 

Anaïs Katz

Analyst, Capital Market Solutions, RMS
As a member of the advisory team within capital market solutions, Anaïs works on producing capital markets’ deal commentary and expert risk analysis. Based in Hoboken, she provides transaction characterizations to clients for bonds across the market and supports the deal team in modeling transactions. She has woked on notable deals for clients such as Tradewynd Re and Golden State Re. Anaïs has also helped to model and develop her group’s internal collateralized insurance pricing model that provides mark to market prices for private transactions. Anaïs holds a BA in physics from New York University and an MSc in Theoretical Systems Biology and Bioinformatics from Imperial College London.

Disaster Risk Reduction: Catastrophe Modeling Takes the Stage at the United Nations

The UN meeting room at the Palais de Nations in Geneva is oval shaped and more than 100 feet long with curved desks arranged in a series of “U”-shaped configurations. Behind each desk, delegates sit with their placards. On the long desk at the front, from left to right the placards read “IIASA” (a systems research institute based in Austria), “Mexico,” “Japan,” “Netherlands,” and “Risk Management Solutions.”

What was RMS doing on the podium at the UN?

Last month I presented on investing in disaster risk reduction, giving the modeler’s point of view on how risk modeling can be linked with incentivizing actions to reduce the impacts of disasters.
This was a key meeting of what was called “PrepComm,” aimed at coordinating national action for disaster risk reduction. The first such agreement, known as the Hyogo Framework for Action (the HFA), initiated in 2005, is up for renewal in 2015. The plan is to create a tougher and more tangible set of goals and procedures with demonstrable outcomes to reduce the loss of lives, livelihoods, and wealth in disasters.

In some form, catastrophe risk models or modeled outputs are required for setting and monitoring progress in disaster risk reduction. I often use the story of Haiti to make the point: fewer than ten people were killed in earthquakes in Haiti between 1900 and 2009; then in one afternoon in early 2010, an estimated 200,000 people were killed. You cannot use previous disaster data to measure future disaster risk; the underlying distribution of impacts is so skewed, so fat-tailed, and so unknown, that a decade of disaster outcomes reveals nothing about the mean risk.

The UNISDR—the influential UN agency that focuses on disaster risk—recognized the power of probabilistic modeling five years ago. However, it remains hard to communicate that to monitor progress on disaster risk reduction you will have to find some proxies for impacts, or use a model. That was the subject of my address to this session. Borrowing a quote from Michael Bloomberg, sponsor of the Risky Business study for which RMS was the modeler of all the future coastal and hurricane risks: “if you can’t measure it, you can’t manage it.”

The delegate from Algeria was skeptical about how to get the private sector involved in disaster risk reduction. I told the story of Istanbul, where the government makes deals with developers to demolish and reconstruct the most dangerous apartment buildings, rehousing the original occupants while the developer profits from selling extra apartments.

The Philippines wanted to know about empowering local authorities. My answer: get the future risk-based costs of disasters on their balance sheet.

Austria wanted to spread the idea of labeling the risk on every house. The Democratic Republic of Congo wanted to know why conflict is not considered a natural hazard. There were many questions and points of discussion over the course of the meeting.

When the next iteration of HFA arrives in a few weeks time, we will see how all the advice, debate, and consultation from the UN meeting has been digested. Regardless, when governments sign off on the new protocol in Sendai, Japan next March, catastrophe risk modeling is likely to become a core component of the global disaster risk reduction agenda.

Because as Michael Bloomberg said, “If you can’t measure it, you can’t manage it.”

RMS and Risky Business: Modeling Climate Change Risk

Earlier this year, RMS partnered with the Risky Business Initiative, a year-long effort co-chaired by former New York City Mayor Michael Bloomberg, former Treasury Secretary Henry Paulson, and Farallon Capital founder Tom Steyer to quantify and publicize the economic risks the United States faces from the impacts of a changing climate.

The report, which launched today, has been widely covered in publications ranging from Fortune and The Wall Street Journal to The Hill. It builds on the best available scientific evidence, including both the Intergovernmental Panel on Climate Change (IPCC) and National Climate Assessments, to highlight the risks and cost a changing climate will bring to the business and financial communities the report addresses.

The report details the impact of climate change at the county, state, and regional level; it is the highly vulnerable coastal regions exposed to rising sea levels and the potential for changes in storm activity where RMS has been privileged to contribute our expertise and modeling.

RMS North Atlantic hurricane and storm surge models are based on a base climatology defined by the historical record of storms and represents the current state of the climate. Sea-level rise will increase the risks associated with storm surges and a changed climate may lead to changes in the frequency and intensity of hurricanes the impact the U.S. East Coast and Gulf States.

To address the potential impacts of such changes, RMS pulled together a cross-functional team from our model development group and consulting teams to implement the changes in storm frequency and sea-level rise in our model and analyze the impacts against our database of U.S. property exposure. The team worked with leading climate and hurricane experts and the Risky Business team to understand the latest scientific thinking and gather the information needed to adjust our model from the peer review literature.

In the space of just a few months, the team developed nearly 20 versions of our storm surge hazard model to reflect the expected increase in sea-level rise through the coming decades up to the year 2100, as well as the range of uncertainty captured by the latest IPCC assessment. In addition, the team developed several hundred alternative scenarios of hurricane frequency to model how hurricane frequency may evolve with different “Representative Concentration Pathways” used by the IPCC to describe possible climate futures, possible depending on how much greenhouse gas is emitted in the years to come.

The results of RMS’ analysis, quantifying the changes in losses to hurricanes and storm surges through the coming century have been fed into the Risky Business econometric modeling to quantify the cost to the U.S. economy.

Our analysis highlights that the sea-level rise alone – one of the most certain aspects of a warmer climate – has the potential to more than double the economic losses to hurricanes and storm surges by the end of the century if left unchecked.

RMS, along with Risky Business, recognizes that the analysis is not definitive; however, the potential costs can be quantified and the risks of in-action assessed. This collaboration has developed an invaluable database of information on the impacts climate change on hurricane risk, and by extension, the U.S. economy as a whole.

Just as the Risky Business Initiative hopes to promote a non-partisan discussion on the risks of climate change within the business and financial communities as a whole, RMS hopes that this work and our continued collaboration with the scientific community will lead to continued dialogue in the (re)insurance and catastrophe loss modeling community on the impact of climate change to our business.

Visit http://riskybusiness.org/ to view the full report.