Tag Archives: Risk Management

Day Four at Exceedance 2017

Thursday in New Orleans, and there was still much to see and learn on the final morning of Exceedance.

Attendees were taking advantage of all there was to offer in The Lab, including connecting with RMS experts for product demonstrations and training for the latest Version 17 and Risk Modeler developments.

23 Mar 2017 EXCD Emily P smaller

As mentioned in yesterday’s blog, attendance has been exceptional at Exceedance, and some track sessions have been so popular that Thursday’s agenda was updated to repeat the High Definition Modeling capabilities, Version 17 RMS® North America Earthquake and RMS® North Atlantic Hurricane Model Changes, RMS(one)® solutions, RMS roadmap and future solutions, and U.S. Flood Market tracks.

A Personal Message from Hemant

The RMS Exceedance Party (EP) Was the Place to Be!

Those who attended the EP Wednesday night at Generations Hall were treated to quite a party! Along with three separate spaces – each with its own New Orleans theme – many grooved to the music of Rockin’ Dopsie, Jr. and the Zydeco Twisters.

23 Mar 2017 EXCD EP party singer small

 

 

 

 

 

 

 

 

 

 

 

 

 

Mr. Dopsie (or perhaps it’s “Mr. Rockin’”) had the dance floor alive with revelers moving to the beat of local zydeco as well as hits from the past. The night was capped off with Café Du Monde serving their world-famous beignets.

A Final Note on Exceedance 2017

As Exceedance 2017 comes to a successful conclusion, all of us here at RMS want to thank those who came from around the globe to be in attendance.

This was truly “your” conference, and we hope you found value in listening to our keynote speakers on the big stage, as well as learning more about our exciting updates and new solutions that will enable you to own your view of risk, provide the flexibility you need to make decisions, operate more cost-effectively, and create resilience.

As we move beyond this year’s Exceedance, RMS is ready to meet its commitments as we remain on track for a full schedule of delivery throughout 2017!

Day Two from Exceedance 2017

Tuesday dawned bright and sunny in New Orleans as Exceedance got underway.

More than 900 attendees joined Hemant and eight keynote speakers during the Exceedance General Session. Attendees learned how RMS continues to deliver on its client commitments with the launches of significant capabilities ranging from Version 17, including the new Version 17 RMS® North America Earthquake Model, Version 17 RMS® North Atlantic Hurricane Model, and Risk Modeler powered by RMS(one)®.

In addition to Hemant, Larry Orecklin from Microsoft took to the stage along with Emily Patterson, Mark Powell, Chris Folkman, Emily Grover-Kopek, Josh Ellingson, Ryan Ogaard and Eric Yau.

Tuesday Highlights

“Exceedance is a key part of our continuing dialogue with clients around their needs and priorities, discussing how we can better align to help meet their business goals.”

Hemant Shah, co-founder and CEO of RMS

Hemant demonstrated the superiority of the Version 17 North America Earthquake (NAEQ) Model through a personal anecdote. As you’d expect, Hemant ran the data on his own house through the model and found that his risk is down 27 percent on an expected loss with risk load factor. #lowerhemantspremium

Eric Yau announced that Risk Modeler, powered by RMS(one), will be ready for general availability in April, and described our continued commitment to RiskLink® as a standalone product, as well as being an integral part of the RMS(one) platform.

Josh Ellingson described how Risk Modeler will empower analysts to spend more time understanding the drivers of risk and applying their creativity to expand their book business by collapsing the manual processing of their modeling workflow.

Build Change

The Lab is Where It’s At!

With The Lab in full swing, attendees took advantage of the opportunity to engage directly with RMS experts – getting up-close insights and training on the RMS(one) platform, Version 17 North Atlantic Hurricane Model and North America Earthquake Model, and much more. It’s truly where the action is!

The Mini Theater

Not to be outdone by The Lab, the Mini Theater on Tuesday played host to three insightful and engaging presentations focused on building resilience in an ever-changing world. Topics included Enhancing Urban Resilience: Managing Risk to Critical Infrastructure; Stories from the Field: Nepal Impact Trek with Build Change, and Road to Coastal Habitats in Managing Natural Hazards.

Monday RMS Welcome Reception a Hit

Last night’s RMS Welcome Reception was a hit – and not just because of the live jazz music. The well attended two-hour welcome event included plenty of mingling, great discussions, and delicious bites.

Put on Your Mask and Come to the Party!

For those of you in attendance at Exceedance, join us in The Lab from 6:00 to 8:00 p.m. to celebrate our special New Orleans-themed masquerade (no costumes required, but masks will be provided). It will be a fun evening where you can engage with RMS leaders, scientists, and strategists as they reveal the latest RMS solutions.

Check back tomorrow for more highlights from Exceedance 2017!

 

Day One from New Orleans – Exceedance Is Under Way!

New Orleans is known for its unique cuisine (crawfish, anyone??), cool music (the birthplace of jazz), Mardi Gras (party!!) – and for the better part of this week – Exceedance 2017.

Exceedance 2017

 

 

 

 

 

 

 

 

 

Yes, Exceedance is finally here, and we’re looking forward to an exciting line up of informative sessions, up-close training, engaging speakers, and networking opportunities. For those of you who can’t join us at Exceedance this year, look for highlights on Twitter and here on the blog, as we publish throughout the event.

Welcome Reception

Get set to mingle tonight at the RMS Welcome Reception, from 6:00 to 8:00 p.m. in Vitascope and the 8 Block Bar at the Hyatt Regency. It’s the perfect venue to enjoy savory hors d’oeuvres, catch up with friends, colleagues, and RMS staff members, and soak up some authentic jazz.

Ready, Set, Go!

RMS has listened and worked closely with our clients to innovate the type of solutions that support their strategic business needs.  In 2017, we’re delivering on these commitments with a significant set of capabilities ranging from Version 17 (including highlights such as the RMS® North Atlantic Earthquake model and the RMS® North America Hurricane Model), to Risk Modeler.

Over the course of the next three days you’ll be able to choose from 105 sessions across 23 different tracks, three General Sessions, The Lab and Mini Theater with up close training that only Exceedance can offer. Exceedance is where the latest modeling, analytics, and technology all come together!

Don’t forget, you can check on events, tailor your schedule, review session times, set up meetings – all with the Exceedance 2017 Mobile App. If you haven’t downloaded it, go to your app store and search for “Exceedance”.

We’ll keep you posted via this blog on each day’s highlights, so check back. And welcome to Exceedance!

A Few Words About Exceedance Before You Go

If you are joining us in New Orleans for Exceedance 2017 in just a few days from now, I wanted to send a quick reminder of all there is to see and do, starting Monday with our pre-conference activities.

Get Ready for 22 Tracks, 105 Sessions, The Lab, Keynote Speakers, and Hands-on Training Opportunities

The Exceedance agenda reflects our commitment to deliver value to clients in a rapidly changing market, including new solutions to increase operational effectiveness, agility, resilience, and business growth.

You’ll have many opportunities to dive deep into more than 20 new models, including the RMS® North America Earthquake Model and the RMS® North Atlantic Hurricane Model, major advances in science, software, and HD-simulation models, The Lab, and more.

For information on the keynote speakers, tracks and sessions, and The Lab, visit the conference website exceedance.rms.com.

French Quarter New Orleans

All Work and No Play? Not at Exceedance!

Along with experiencing all there is to discover and learn at Exceedance, there are plenty of opportunities to relax and have some fun with the following pre-conference and evening activities:

  • RMS Welcome Reception: Get set to party as Exceedance kicks off in style with a jazz-flavored welcome reception on Monday evening.
  • Evening Reception in The Lab: Tuesday night offers a festive celebration of New Orleans’ tradition with a colorful masquerade party (masks provided) – in The Lab. You’ll also have a chance to engage with RMS leaders, scientists, and strategists as they reveal the latest RMS solutions.
  • Exceedance Party (EP) “A Taste of New Orleans”: Evening festivities conclude on Wednesday with “A Taste of New Orleans,” including three “can’t miss” hallmarks of New Orleans: Jazz Night Club, Mardi Gras, and Louisiana Cajun. Be ready to put on your dancing shoes and show us your voodoo…

Watch for Our Daily Blog During Exceedance

We will be posting a daily blog on these pages during Exceedance to give you a round-up of the highlights so far including sessions, The Lab, keynote speakers, special events, and more.  Please keep an eye out for it!

See you soon in the Big Easy.

Closing the Resilience Gap: A Tale of Two Countries, Nepal and Chile

Nepal house smallOn April 25, 2015, a magnitude 7.8 earthquake struck nearly 50 miles (80 km) northwest of Kathmandu, the capital of Nepal.  This resulted in more than 8,600 fatalities, the destruction of around half a million homes, and left 2.8 million people displaced.

Some two years on and rebuilding efforts have barely started, as US$4.1 billion of pledged international aid is reportedly stalled within Nepal’s National Reconstruction Authority.

As of February 2017, 14,000 homes have been rebuilt and some 30,000 homes are in construction – less than a tenth of the total number of homes destroyed.

Contrast this with the situation in Chile. Since a magnitude 9.4 earthquake in 1960, the country has focused on adequate seismic design requirements within its building code, with both government and the public willing to follow the principles of earthquake-resistant building design. And it’s paying off.

After a magnitude 8.8 quake in 2010, structures in areas that experienced strong shaking had less damage than would have been seen if building codes were weaker. Of 370,000 housing units affected by the earthquake, nearly half experienced only minor damage, and just 22 percent were destroyed.  Where commercial buildings were designed with the help of structural engineers, only five were destroyed, according to the U.S. Geological Survey.

This wide inequity in resilience between two countries facing major seismic hazard brings into sharp focus the urgent need for better quantification, mitigation, and post-event protection for all people, regardless of their location.

Bridging the Divide

Communities around the world can become more resilient both before an event strikes, through practices such as construction education and the implementation of building codes, or post-event by providing insurance and other appropriate risk transfer solutions for individuals and governments. By empowering these stakeholders, our industry can play a vital role in helping to ensure a safer world for all.

Social enterprises such as Build Change, who work on the ground in countries like Nepal, Columbia, and Haiti, are helping to bridge some of this ‘resilience gap’ by working with local governments to institute building codes and train their construction sectors in locally attainable and safe building practices. Over the past 10 years, Build Change has trained over 25,000 people in the basics of safe construction, created over 12,000 local jobs, and enabled 245,000 people to live and learn in safer homes and schools within some of the most catastrophe-prone regions of the planet.

Nepal builder smallThis week, during the annual RMS Impact Trek, both our employees and our clients representing major insurance and reinsurance firms are working together on the ground in Nepal with Build Change, exploring solutions to bring greater synergy and resilience capacity-building to the forefront of our market. We are proud to partner with Build Change by also providing grants to jumpstart and enhance its country programs, and allowing the organization to use our products for free in order to better quantify the risk landscape of the countries in which they operate.

All of us within the insurance industry have an opportunity to reshape the future for communities around the globe by allowing them to better measure and understand their risk, so that responsible mitigation efforts can take shape. We can create tools to help ensure that those who are struck by catastrophe can recover quickly and completely.

At RMS, we remain focused on contributing to this mission by strengthening resilience from the ground up, and continuing our work alongside impactful organizations like Build Change.

The Age of a Roof and The Price You Pay: New Analysis of Hurricane Risk in the U.S.

RMS has completed research on hurricane risk to single-family dwellings using an improved understanding of roof age, which can lead to more accurate loss projections using our models

Residential gable end roof failure in the Bahamas, observed following Hurricane Matthew

Residential gable end roof failure in the Bahamas, observed following Hurricane Matthew

Weak roofs mean losses during hurricanes. During reconnaissance trips to the southeast U.S. and the Bahamas following Hurricane Matthew last fall, RMS experts saw ample evidence of this simple fact.  Their on-the-ground survey highlighted everything from shingle and tile damage to complete roof failures.

Roof weakness significantly influences RMS’ view of structural vulnerability in our North Atlantic Hurricane models, which can factor in a roof’s age, covering, and shape into calculations of potential loss. However, this valuable property data is not captured by many insurers, and this could represent a missed business opportunity to improve underwriting – whether it be pricing or risk selection.

Extending the Data, Refining the Insights

RMS already has a dataset of hurricane claims from over one million single-family dwelling (SFD) homes in Florida and the northeast U.S., representing $240 billion in total insured value. However, this dataset lacks roof characteristics for a majority of the homes, so we augmented it with roof age information obtained from BuildFax, which holds detailed building characteristics for over 90 million properties in over 10,000 U.S. cities and counties. From this enhanced dataset we found:

  • About 70 percent of Florida homes (SFDs) had roofs aged 10 years or older at the time of the 2004-05 hurricanes
  • Roughly half of the Northeast homes (SFDs) had roofs aged 20 years or older at the time of Superstorm Sandy (2012)
  • Only 20% of all homes (SFDs) still had their original roofs, although this proportion was lower for coastal properties than for inland properties

So what was the relationship between roof age and losses? In the second stage of our research, our vulnerability modelers paired the exposure data with 182,000 hurricane claims, totaling $2.25 billion in paid losses, to look for patterns related to roof age.

graph claim severity 1

Normalized severity of Florida claims from the 2004-05 hurricanes, by roof age and selected wind speed bands, for all risk classes

Normalized severity of Northeast claims from Sandy, by roof age and selected wind speed bands, for all risk classes.

Normalized severity of Northeast claims from Sandy, by roof age and selected wind speed bands, for all risk classes

 

 

 

 

 

 

 

 

 

As expected, we found that homes with older roofs generally corresponded with more claims, and claims of greater severity. This was most evident at the low wind speeds experienced in the Northeast U.S. during Superstorm Sandy, as well as at higher wind speeds experienced in the Florida hurricanes. These graphs show that buildings in Florida with a roof older than 20 years are associated with claims that are between 50-100% more severe, compared with buildings having a roof less than five years old. A similar trend appears in the Northeast, but is muted because of the smaller dataset.

That’s the picture from historical data. But what about modeling potential future events? To answer that question we analyzed the enlarged Florida dataset, focusing on how roof age at a particular location compares to the industry average for that region.

patchwork map

Change in modeled AAL by Florida county when including roof age information from BuildFax

The change in modeled average annual loss (AAL) by county shows a patchwork of increased and decreased risk that corresponds to the average roof age of properties in each county.

So we can see that using roof age data leads to significant differences in modeled loss within regions.

That’s a valuable insight in itself. But we decided to drill down a little deeper.

 

 

 

From counties to ZIP codes to individual locations

Although the maximum change in AAL was less than 10% at the county level, changes of up to 20% were observed at the level of ZIP codes. These results show that improved understanding of predominant roof age could influence a company to change its regional underwriting strategy or refine its rating territories.

Going more granular still, within each county and ZIP code there is variation in the roof age of individual homes and this is critical to consider when writing new business. The scatter plot below shows the change in AAL at individual locations. Those homes with older roofs produce higher than average AAL and vice versa.

red blob map

Change in modeled AAL by location when including roof age information. “Location AAL” (x-axis) represents AAL without roof age

So when we go down to the level of individual locations the impact of roof age data leads to loss changes of up to 50%, demonstrating higher significance than at the regional level. For high hurricane risk locations in Florida with large baseline AALs, this change translates into substantial dollar amounts. That’s crucial to know, revealing key opportunities to improve underwriting practices. For instance, companies might choose to quote more competitively on price for properties with newer roofs.

Unsurprisingly, over time strengthened building codes and practices have led to stronger roofs that are more resilient to hurricane damage. But this research tells us much more – the sheer magnitude of modeled loss changes observed was significant, with clear implications for profitability, as explained by BuildFax CEO Holly Tachovsky:

“These results reveal key opportunities to improve underwriting practices, including pricing and risk selection. A focus on roof age can be the difference-maker for loss ratios in certain geographies. As a result, we see a growing level of sophistication among carriers that want to rate and select with a higher degree of accuracy.”

RMS remains committed to partnerships with industry experts like BuildFax to communicate the business benefits of emerging trends in the (re)insurance space.

Friday 13th and the Long-Term Cost of False Alarms

If the prospect of flooding along the East Coast of England earlier this month was hard to forecast, the newspaper headlines the next day were predictable enough:

Floods? What floods? Families’ fury at evacuation order over storm surge … that never happened (Daily Mail)

East coast residents have derided the severe storm warnings as a ‘load of rubbish’ (The Guardian)

Villagers shrug off storm danger (The Times)

The police had attempted an evacuation of some communities and the army was on standby. This was because of warnings of a ‘catastrophic’ North Sea storm surge on January 13 for which the UK Environment Agency applied the highest level flood warnings along parts of the East Coast: ‘severe’ which represents a danger to life. And yet the flooding did not materialize.

Environment Agency flood warnings: January 13 2017

Water levels were 1.2m lower along the Lincolnshire coast than those experienced in the last big storm surge flood in December 2013, and 0.9m lower around the Norfolk towns of Great Yarmouth and Lowestoft. Predicting the future in such complex situations, even very near-term, always has the potential to make fools of the experts. But there’s a pressure on public agencies, knowing the political fallout of missing a catastrophe, to adopt the precautionary principle and take action. Imagine the set of headlines, and ministerial responses, if there had been no warnings followed by loss of life.

Interestingly, most of those who had been told to evacuate as this storm approached chose to stay in their homes. One police force in Essex, knocked on 2,000 doors yet only 140 of those people registered at an evacuation centre. Why did the others ignore the warnings and stay put? Media reports suggest that many felt this was another false alarm.

The precautionary principal might seem prudent, but a false alarm forecast can encourage people to ignore future warnings. Recent years offer numerous examples of the consequences.

The Lessons of History

Following a 2006 Mw8.3 earthquake offshore from the Kurile Islands, tsunami evacuation warnings were issued all along the Pacific coast of northern Japan, where the tsunami that did arrive was harmless. For many people that experience weakened the imperative to evacuate after feeling the three-minute shaking of the March 2011 Mw9 earthquake, following which 20,000 people were drowned by the tsunami. Based on the fear of what happened in 2004 and 2011, today tsunami warnings are being ‘over-issued’ in many countries around the Pacific and Indian Oceans.

For the inhabitants of New Orleans, the evacuation order issued in advance of Hurricane Ivan in December 2004 (when one third of the city’s population moved out, while the storm veered away), left many sceptical about the mandatory evacuation issued in advance of Hurricane Katrina in August 2005 (after which around 1500 drowned).

Agencies whose job it is to forecast disaster know only too well what happens if they don’t issue a warning as any risk looms. However, the long-term consequences from false alarms are perhaps not made explicit enough. While risk models to calculate the consequence are not yet available, a simple hypothetical calculation illustrates the basic principles of how such a model might work:

  • the chance of a dangerous storm surge in the next 20 years is 10 percent, for a given community;
  • if this happens, then let’s say 5,000 people would be at grave risk;
  • because of a recent ‘false’ alarm, one percent of those residents will ignore evacuation orders;
  • thus the potential loss of life attributed to the false alarm is five people.

Now repeat with real data.

Forecasting agencies need a false alarm forecast risk model to be able to help balance their decisions about when to issue severe warnings. There is an understandable instinct to be over cautious in the short-term, but when measured in terms of future lives lost, disaster warnings need to be carefully rationed. And that rationing requires political support, as well as public education.

[Note: RMS models storm surge in the U.K. where the risk is highest along England’s East Coast – the area affected by flood warnings on January 13. Surge risk is complex, and the RMS Europe Windstorm Model™ calculates surge losses caused by extra-tropical cyclones considering factors such as tidal state, coastal defenses, and saltwater contamination.]

After the devastating 2015 earthquake how is Nepal recovering?

It’s more than 20 months since a magnitude 7.8 earthquake hit Nepal in April 2015, swiftly followed by another earthquake of magnitude 7.3 the next month.

Nearly 9,000 people died. More than 600,000 houses were destroyed and around 290,000 were damaged, according to the United Nations.

On the face of it local people now appear to be getting on with life as normal but look closer and reminders of the disaster are never far away. Whether it be a snaking crack in a wall, large enough to put an arm through – or the still air now taking the space where temples once stood.

International donors have pledged some $4 billion following the earthquake but this is yet to produce the required progress in Nepal’s rebuilding or significantly improve the life of people on the ground.

Framing of a schoolhouse in village hit by earthquake

The scale of the damage is huge and the reconstruction costs – to a country already poor – are overwhelming. The challenge is to rebuild in a way that makes Nepal more resilient to future earthquakes which, in such a seismically active region, are more a question of ‘when’ not ‘if’.

The capital, Kathmandu, wasn’t affected as badly as many feared but as you head out into the hills you see conditions deteriorate considerably. Partially collapsed buildings and piles of rubble are a common sight. Rural Nepalese houses normally consist of three stories, with the first used for livestock, the second for living and the third for agricultural use. These tall buildings are made from heavy and brittle materials, typically stone and mud mortar, which produce a vulnerability to earthquake to match that in many other regions of the world.

Earthquake damage to a traditional three-story house

Recently I saw the damage for myself. Along with four of my RMS colleagues, I travelled to Nepal to support Build Change’s work to strengthen the resilience of rural communities. It’s an organization focussed on helping people in developing countries make their homes and schools better able to withstand earthquakes and hurricanes.

Immediately after the 2015 Nepal earthquake it deployed teams to the affected areas to perform surveys of the damage and validate engineering assumptions as to why some buildings remain standing when others had collapsed.

Build Change’s site engineers oversaw the retrofitting and rebuilding work carried out by local builders who themselves had been trained by Build Change. Being scientists and engineers, the RMS team was impressed to see the high quality of workmanship and design, the positive response of Build Change’s staff to our suggestions for incremental improvements – as well as the engagement of the wider community.

RMS and Build Change staff advise on house retrofitting

And on a personal level, it was this community which made an especially powerful impression on me. Kindness and generosity were shown by the Nepalese who have been hit so hard, yet are so willing to share – we were routinely offered food by the local people who were so interested to know why there are foreigners in their village. Perhaps they took hope from seeing that they hadn’t been forgotten.

Money is not abundant in Nepal, but the engineering expertise is developing. And along with this expertise there is more than enough human grit and determination among the Nepalese people to rebuild their country stronger.

“Italy is Stronger than any Earthquake”

Those were the words of the then Italian Prime Minister, Matteo Renzi, in the aftermath of two earthquakes on the same day, October 26, 2016. As a statement of indomitable defiance at a scene of devastation it suited the political and public mood well. But the simple fact is there is work to do, because Italy is not as strong as it could be in its resilience to earthquakes.

There’s a long history of powerful seismic activity in the central Apennines: only recently we’ve seen L’Aquila (2009, Mw6.3), Amatrice (August 2016, Mw6.0), two earthquakes in the area near Visso (October 2016, Mw 5.4 and 5.9) and Norcia (October 2016, Mw6.5). These have resulted in hundreds of fatalities, mainly attributed to widespread collapse of old buildings, emphasizing that earthquakes don’t kill people – buildings do. Whilst Italy’s Civil Protection Department provides emergency management and support after earthquakes, there is too little insurance help for the financial resiliency of the communities most affected by all these events. While the oft-repeated call for earthquake insurance to be compulsory continues to be politically unobtainable, one way it could be spread more widely is through effective modeling. And RMS expertise can help with this, allowing the market to better understand the risk and so build resilience.

Examining High Building Fragility

The two most significant factors for earthquake risk in Italy are (i) construction materials and (ii) the age of the buildings. The majority of the damaged and destroyed buildings were made from unreinforced masonry, and built prior to the introduction of the most recent seismic design and building codes, making them particularly susceptible. With the RMS® Europe Earthquake model capturing both the variations in construction types and age, as well as other vulnerability factors, (re)insurers can accurately reflect the response of different structures to earthquakes.  This allows the models to be used to evaluate the cost benefits of retrofitting buildings.  RMS has worked with the Italian National Institute for Geophysics and Volcanology (INGV) to see how such analyses could be used to optimize the allocation of public funds for strengthening older buildings, thereby reducing future damage and costs.

Seismic Risk Assessment

The high-risk zone of the central Apennines is described well by probabilistic seismic hazard assessment (PSHA) maps, which show the highest risks in that region resulting from the movement of tectonic blocks that produce the extensional, ‘normal’ faulting observed. The maps also show earthquake risk throughout the rest of Italy. RMS worked with researchers from INGV to develop our view of risk in 2007, based on the latest available databases at that time, including active faults and earthquake catalogs. The resulting hazard model produces a countrywide view of seismic hazard that has not been outdated by newer studies, such as the 2009 INGV Seismic Hazard Map and the 2013 European Seismic Hazard Map published by the SHARE consortium, as shown below:

blog_italy-eq

The Route to Increased Resiliency

Increasing earthquake resiliency in Italy should also involve further development of the private insurance market. The seismic risk in Italy is relatively high for western Europe, whilst the insurance penetration is low, even outside the central Apennines. For example, in 2012, there were two large earthquakes in the Emilia-Romagna region of the Po valley, where there are higher concentrations of industrial and commercial risks. Although the type of faults and risks vary by region, such as the potential impact of liquefaction, the RMS model captures such variations in risk and can be used for the development of risk-based pricing and products for the expansion of the insurance market throughout the country.

Whilst Italy’s seismic events in October caused casualties on a lesser scale than might have been, the extent of the damage highlights once again the prevalence of earthquake risk. It is only a matter of time before the next disaster strikes, either in the Central Apennines or elsewhere. When that happens, the same questions will be asked about how Italy could be made more resilient. But if, by then, the country’s building stock is being made less susceptible and the private insurance market is growing markedly, then Italy will be able to say, with justification, it is becoming stronger than any earthquake.

Earthquake Hazard: What Has New Zealand’s Kaikoura Earthquake Taught Us So Far?

The northeastern end of the South Island is a tectonically complex region with the plate motion primarily accommodated through a series of crustal faults. On November 14, as the Kaikoura earthquake shaking began, multiple faults ruptured at the same time culminating in a Mw 7.8 event (as reported by GNS Science).

The last two weeks have been busy for earthquake modelers. The paradox of our trade is that while we exist to help avoid the damage this natural phenomenon causes, the only way we can fully understand this hazard is to see it in action so that we can refine our understanding and check that our science provides the best view of risk. Since November 14 we have been looking at what Kaikoura tells us about our latest, high-definition New Zealand Earthquake model, which was designed to handle such complex events.

Multiple-Segment Ruptures

With the Kaikoura earthquake’s epicenter at the southern end of the faults identified, the rupture process moved from south to north along this series of interlinked faults (see graphic below). Multi-fault rupture is not unique to this event as the same process occurred during the 2010 Mw 7.2 Darfield Earthquake. Such ruptures are important to consider in risk modeling as they produce events of larger magnitude, and therefore affect a larger area, than individual faults would on their own.

Map showing the faults identified by GNS Sciences as experiencing surface fault rupture in the Kaikoura Earthquake.
Source: http://info.geonet.org.nz/display/quake/2016/11/16/Ruptured +land%3A+observations+from+the+air

In keeping with the latest scientific thinking, the New Zealand Earthquake HD Model provides an expanded suite of events that represent complex ruptures along multiple faults. For now, these are included only for areas of high slip fault segments in regions with exposure concentrations, but their addition increases the robustness of the tail of the Exceedance Probability curve, meaning clients get a better view of the risk of the most damaging, but lower probability events.

Landsliding and Liquefaction

While most property damage has been caused directly by shaking, infrastructure has been heavily impacted by landsliding and, to a lesser extent, liquefaction. Landslides and slumps have occurred across the region, most notably over Highway 1, an arterial route. The infrastructure impacts of the Kaikoura earthquake are a likely dress rehearsal for the expected event on the Alpine Fault. This major fault runs 600 km along the western coast of the South Island and is expected to produce an Mw 8+ event with a probability of 30% in the next 50 years, according to GNS Science.

As many as 80 – 100,000 landslides have been reported in the upper South Island, with some creating temporary dams over rivers and in some cases temporary lakes (see below). These dams can fail catastrophically, sending a sudden increase of water flow down the river.

 

picture2

Examples of rivers blocked by landslides photographed by GNS Science researchers.

Source: http://info.geonet.org.nz/display/quake/2016/11/18/ Landslides+and+Landslide+dams+caused +by+the+Kaikoura+Earthquake

 

 

 

 

 

 

 

 

Liquefaction occurred in discrete areas across the region impacted by the Kaikoura earthquake. The Port of Wellington experienced both lateral and vertical deformation likely due to liquefaction processes in reclaimed land. There have been reports of liquefaction near the upper South Island towns (Blenheim, Seddon, Ward), but liquefaction will not be a driver of loss in the Kaikoura event to the extent it was in the Christchurch earthquake sequence.

RMS’ New Zealand Earthquake HD Model includes a new liquefaction component that was derived using the immense amount of new borehole data collected after the Canterbury Earthquake Sequence in 2010-2011. This new methodology considers additional parameters, such as depth to the groundwater table and soil-strength characteristics, that lead to better estimates of lateral and vertical displacement. The HD model is the first probabilistic model with a landslide susceptibility component for New Zealand.

Tsunami

The Kaikoura Earthquake generated tsunami waves that were observed in Kaikoura at 2.5m, Christchurch at 1m, and Wellington at 0.5m. The tsunami waves arrived in Kaikoura significantly earlier than in Christchurch and Wellington indicating that the tsunami was generated near Kaikoura. The waves were likely generated by offshore faulting, but also may be associated with submarine landsliding. Fortunately, the scale of the tsunami waves did not produce significant damage. RMS’ latest New Zealand Earthquake HD Model captures tsunami risk due to local ocean bottom deformation caused by fault rupture, and is the first model in the New Zealand market to do this, that is built from a fully hydrodynamic model.

Next Generation Earthquake Modeling at RMS

Thankfully the Kaikoura earthquake seems to have produced damage that is lower than we might have seen had it hit a more heavily populated area of New Zealand with greater exposures – for detail on damage please see my other blog on this event.

But what Kaikoura has told us is that our latest HD model offers an advanced view of risk. Released only in September 2016, it was designed to handle such a complex event as the Kaikoura earthquake, featuring multiple-segment ruptures, a new liquefaction model at very high resolution, and the first landslide susceptibility model for New Zealand.