Tag Archives: India

India’s Need for Disaster Risk Reduction: Can it Turn a Plan into Action?

This was the first time I’d ever heard a Prime Minister praising the benefits of “risk mapping.” Mid-morning on Thursday November 3 in a vast tent in the heart of New Delhi, the Indian Prime Minister, Narendra Modi, was delivering an introductory address to welcome four thousand delegates to the 2016 Asian Ministerial Conference on Disaster Risk Reduction.

Modi mentioned his own personal experience of disaster recovery after the 2001 Gujarat earthquake in which more than 12,000 people died, before presenting a ten-point plan of action in response to the 2015 Sendai Framework for disaster risk reduction. There were no guarantees of new regulations or changes in policy, but three of his ten points were particularly substantive.

First there was a call for appropriate protections to be applied to all government sponsored construction of infrastructure or housing against the relevant hazards at that location. Second he called for “work towards” achieving universal “coverage” (insurance if not by name?) against disasters– from the poorest villager to big industries and state governments. Third he called for standardized hazard and risk mapping to be developed not only for earthquake but for other perils: chemical hazards, cyclones, all varieties of floods and forest fires.

More Economic Development Means More Exposure to Risk

India is at a development threshold, comparable to that reached by Japan at the end of the 1950s and China in the 1990s. Rapid economic growth has led to a dramatic expansion of building and value in harm’s way and there now needs to be a significant compensatory focus on measures to reduce risk and expand protections, whether through insurance systems or flood walls.  Development in India has been moving too fast to hope that adequate building standards are being consistently followed – there are not enough engineers or inspectors.

The Chennai floods at the end of 2015 have come to highlight this disaster-prone landscape. Heavy end-of-year monsoonal downpours fell onto saturated ground after weeks of rainfall, which were then ponded by choked drainage channels and illegal development, swamping hundreds of thousands of buildings along with roads and even the main airport. The city was cut off and economic losses totaled billions of U.S. dollars, with more than 1.8 million people being displaced.

Sorting out Chennai will take co-ordinated government action and money: to implement new drainage systems, relocate or raise those at highest risk and apply flood zonations. Chennai provides a test that Disaster Risk Reduction really is a priority, as Mr. Modi’s speech suggested. The response will inevitably encounter opposition, from those who cannot see why they should be forced to relocate or pay more in their taxes to construct flood defenses.

The one community notably missing from Prime Minister Modi’s call to action was the private sector, even though a pre-conference session the day before, organized by Federation of Indian Chambers of Commerce (FICCI), had identified that 80% of construction was likely to be privately financed.

I gave two talks at the conference – one in the private sector session – on how modelers like RMS have taken a lead in developing those risk maps and models for India, including high resolution flood models that will help extend insurance. Yet armed with information by which to differentiate risk and identify the hot spots, the government may need to step in and provide its own coverages for those deemed too high risk by private insurers.

Auditing Disaster Risk Reduction with Cat Models

In a side meeting at the main conference I presented on the need to have independent risk audits of states and cities, to measure progress in achieving their disaster risk reduction goals, in particular when it comes to earthquake mortality – for which experience from the last few decades gives no perspective on the true risk of potentially large and destructive future earthquakes happening in India – this is where probabilistic catastrophe models are invaluable. The Nepal earthquake of 2015 has highlighted the significant vulnerability of ordinary brick and concrete buildings in the region.

I came away seeing the extraordinary opportunity to reduce and insure risk in India, if ten-point lists can truly be converted into co-ordinated action.

Meanwhile as a test of the government’s resolve in the days leading up to the conference, Delhi was shrouded in its worst ever smog: a toxic concoction of traffic fumes, coal smoke, and Diwali fireworks, enriched to extremely dangerous levels in micro-particles, a smog so thick and pervasive that it seeped inside buildings, so that several attendees asked why the toxic smog was not itself being classified and treated as a true “manmade disaster.”

An Industry Call to Action: It’s Time for India’s Insurance Community To Embrace Earthquake Modeling

The devastating Nepal earthquake on April 25, 2015 is a somber reminder that other parts of this region are highly vulnerable to earthquakes.

India, in particular, stands to lose much in the event of an earthquake or other natural disaster: the economy is thriving; most of its buildings aren’t equipped to withstand an earthquake; the region is seismically active, and the continent is home to 1.2 billion people—a sizeable chunk of the world’s population.

In contrast to other seismically active countries such as the United States, Chile, Japan and Mexico, there are few (re)insurers in India using earthquake models to manage their risk, possibly due to the country’s nascent non-life insurance industry.

Let’s hope that the Nepal earthquake will prompt India’s insurance community to embrace catastrophe modeling to help understand, evaluate, and manage its own earthquake risk. Consider just a few of the following facts:

  • Exposure Growth: By 2016, India is projected to be the world’s fastest growing economy. In the past decade, the country has experienced tremendous urban expansion and rapid development, particularly in mega-cities like Mumbai and Delhi.
  • Buildings are at Risk: Most buildings in India are old and aren’t seismically reinforced. These buildings aren’t expected to withstand the next major earthquake. While many newer buildings have been built to higher seismic design standards they are still expected to sustain damage in a large event.
  • Non-Life Insurance Penetration Is Low but Growing: India’s non-life insurance penetration is under one percent but it’s slowly increasing—making it important for (re)insurers to understand the earthquake hazard landscape.

Delhi and Mumbai – Two Vulnerable Cities

India’s two mega cities, Delhi and Mumbai, have enjoyed strong economic activity in recent years, helping to quadruple the country’s GDP between 2001 and 2013.

Both cities are located in moderate to high seismic zones, and have dense commercial centers with very high concentrations of industrial and commercial properties, including a mix of old and new buildings built to varying building standards.

According to AXCO, an insurance information services company, 95 percent of industrial and commercial property policies in India carry earthquake cover. This means that (re)insurers need to have a good understanding of the exposure vulnerability to effectively manage their earthquake portfolio aggregations and write profitable business, particularly in high hazard zones.

For (re)insurers to effectively manage the risk in their portfolio, they require an understanding of how damage can vary depending on the different type of construction. One way to do this is by using earthquake models, which take account of the different quality and types of building stock, enabling companies to understand potential uncertainty associated with varying construction types.

A Picture of India’s Earthquake Risk

India sits in a seismically active region and is prone to some of the world’s most damaging continental earthquakes.

The country is tectonically diverse and broadly characterized by two distinct seismic hazard regions: high hazard along the Himalayan belt as well as along Gujarat near the Pakistan border (inter-plate seismicity), and low-to-moderate hazard in the remaining 70 percent of India’s land area, known as the Stable Continental Region.

The M7.8 Nepal earthquake occurred on the Himalayan belt, where most of India’s earthquakes occur, including four great earthquakes (M > 8). However, since exposure concentrations and insurance penetration in these areas are low, the impact to the insurance industry has so far been negligible.

In contrast, further south on the peninsula where highly populated cities are located there have been several low magnitude earthquakes that have caused extensive damages and significant casualties, such as the Koyna (1967), Latur (1993), and Jabalpur (1997) earthquakes.

It is these types of damaging events that will be of significance to (re)insurers, particularly as insurance penetration increases. Earthquake models can help (re)insurers to quantify the impacts of potential events on their portfolios.

Using Catastrophe Models to Manage Earthquake Risk

There are many tools available to India’s insurance community to manage and mitigate earthquake risk.

Catastrophe models are one example.

Our fully probabilistic India Earthquake Model includes 14 historical events, such as the 2001 Gurajat and 2005 Kashmir earthquakes, and a stochastic event set of more than 40,000 earthquake scenarios that have the potential to impact India, providing a comprehensive view of earthquake risk India.

Since its release in 2006, (re)insurers in India and around the world have been using the RMS model output to manage their earthquake portfolio aggregations, optimizing their underwriting and capital management processes. We also help companies without the infrastructure to use fully probabilistic models to reap the benefits of the model through our consulting services.

What are some of the challenges to embracing modeling in parts of the world like India and Nepal? Feel free to ask questions or comment below. 

The Nepal Earthquake: What We Know So Far

Delhi, India also at high risk of earthquakes from the same collision zone

The earthquake in Nepal is very much a developing story. However, based on what we know, it’s shaping up to be the worst natural disaster this calendar year, particularly because Nepal is remote, economically challenged, and not resilient to an earthquake of this magnitude. The ground shaking appears to have been stronger in Kathmandu than the 1934 earthquake, possibly making it the largest we’ve seen in Nepal in almost a century.

As of April 29, Time Magazine reports that the death toll has crossed 5,000. It’s expected that casualties could surpasses 10,000, as rescue efforts continue.

While it is too early to draw substantial conclusions about the disaster—and the final casualty number—we are able to share some insight into the event and risk in the area:

Nepal EQ Map 1

Most large earthquakes in this region occur along the plate boundary collision zone:

In this region, the Indian continent dips beneath the Tibetan plateau. The Himalayan mountain chain and Everest are products of this collision zone, and the area at risk stretches from Assam and southern Bhutan to the east through Nepal to the mountains of northern Pakistan in the west. The magnitude 7.6 earthquake in Kashmir in 2005, which caused terrible damage to villages either side of the Pakistan-India border resulting in 86,000 fatalities, occurred along this plate boundary.

Nepal’s fragile economy will be affected:  Nepal is one of the world’s poorest countries. The country’s main revenue sources are agriculture and tourism, including foreigners looking to scale Mount Everest. Reports indicate that the damage caused in recent days could substantially set back the economy of Nepal.

Kathmandu was hit hardest:The fault rupture of the Nepal earthquake extended eastward from its epicenter, passing underneath the city of Kathmandu.

Historic buildings throughout the city have been reduced to rubble. Darbar Square, which attracts millions of tourists annually and is vital for the Nepalese economy, has been razed. An overwhelming majority of homes in what’s known as the Gorkha district have been destroyed. Furthermore, many villages in the region needing assistance are in mountainous areas, making rescue efforts difficult.

Structures in Nepal were already at risk: The Nepalese population resides in unreinforced masonry structures that are highly vulnerable to earthquake ground shaking. Secondary hazards are of concern as well—including landslides and liquefaction.

Aid efforts are already helping to make Nepal more resilient

The widespread damage to infrastructure will be a significant setback for Nepal, which relies on agriculture and tourism. Organizations such as Build Change are already on site helping affected communities to start rebuilding their homes using disaster-resistant designs to increase the country’s resilience to future earthquakes. If you would like to support Build Change’s work, you can donate to their fund by clicking here.

Delhi, India is at high risk of earthquakes from the same collision zone

Between Gujarat and the Himalayas lies the mega-city of Delhi, which is exposed to significant earthquake risk from the surrounding plate movement.

EQ_Nepal_GIS_29Apr2015_v4

Delhi’s seismic risk comes from both the Himalayan thrust zone, where the recent Nepal earthquake struck, and the transition zone between the stable continent and the active plate boundary—also the site of the 2001 M7.7 Gujarat earthquake, which resulted in 20,000 fatalities.

According to the Bureau of Indian Standards’ seismic zoning map, Delhi is within a “high seismic risk zone.” Combined with an older building stock made of unreinforced masonry and reinforced concrete, the city’s people, buildings, and economy are at significant risk.

Delhi is the northern industrial hub of India, with significant manufacturing exposure, including textiles, chemicals, fertilizers, and leather goods. Delhi’s service sector has also grown enormously in recent years, with expansion in information technology, telecommunications, and banking.

Projects piloting risk reduction in the city—through building retrofits or enhanced building inspections—have been underway and offer some degree of comfort that the seismic risk issues in Delhi are being acknowledged.

We will continue to monitor the situation in Nepal. If you have questions about the disaster please feel free to ask them in the comment section.

Managing Risk 10 Years After the 2004 Indian Ocean Earthquake and Tsunami

On Sunday, December 26, 2004 at approximately 8 a.m. local time, a massive earthquake occurred along the Indian–Burma plate boundary off the coast of Sumatra, Indonesia. Rupturing over 1,200 km of the Sunda Trench, the magnitude of the earthquake has been estimated between M9.0 and M9.3—with the U.S. Geological Survey’s Centennial Earthquake Catalog estimating M9.1. Occurring at a fairly shallow depth—less than 30 km—the earthquake generated a basin-wide tsunami that inundated coastlines across the Indian Ocean and caused run-up waves farther afield, impacting the eastern coastline of Africa. By the end of the day, it was apparent that the event was going to emerge as one of the worst natural disasters in modern times.

Click here for full size image

Economic Toll and Recovery

Overall economic losses from the 2004 disaster were approximately $10 billion, with the majority of loss attributed to the damage in the Indonesia, Thailand, Sri Lanka, and India. The large majority of property damage was caused by the tsunami waves. Along coastlines of most of the affected countries, buildings were situated closer to sea level than is typical of higher latitudes, exacerbating the impacts.

In the aftermath of the event, the international relief efforts across the Indian Ocean were seen as fairly effective. But the longer-term recovery work in certain regions has struggled—due to the overwhelming numbers of people displaced from their homes. There are, of course, examples of well-executed reconstruction efforts. Build Change—a partner organization of RMS—has worked with tsunami survivors in Banda Aceh, Sumatra to rebuild safe, sustainable homes. Ten years after the event, evidence of the destruction wrought by the tsunami remains in the high-impacted areas.

Humanitarian Impact 

While tsunami in the Indian Ocean have certainly occurred many times before, from the perspective of modern history, the human casualties from the 2004 Indian Ocean Earthquake and Tsunami have no historical equal. More than 225,000 people lost their lives in the disaster, with most of the loss of life occurring in the near field in Sumatra, Indonesia. In Indonesia, the tsunami destroyed virtually every village, town, road, and bridge along a 170-km stretch of coast less than 10 m above sea level. Sri Lanka’s Eastern and Southern provinces were severely impacted, with fatality rate among the population within 1 km of coast between 15% and 20%. In India, entire villages in Tamil Nadu were destroyed.

In Thailand, the tsunami affected local inhabitants and foreign tourists in the densely inhabited Phuket Island. The fatalities among the tourists were a significant proportion of the overall loss of life, as many were on the beach or in hotels near the sea at the time the tsunami waves struck. In addition, the initial tsunami wave in Phuket, which was east of the rupture, began with a receding wave. Many of the tourists (not indigenous to tsunami-prone coastal regions) were unfortunately not familiar with the nature of tsunami waves. In many (but not all) tsunami, the first movement of the sea is a withdrawal. Any occasion when the sea level recedes rapidly and inexplicably should be taken as a signal for immediate flight to higher ground.

Managing Tsunami Risk in the Aftermath

The 2004 Indian Ocean Tsunami highlighted inherent vulnerabilities in the world’s coastlines and the people who live there. Coastal populations are on the increase in many parts of the world, mostly due to the exploitation of sea resources or tourism-related activities. Adequate tsunami mitigation measures— such as tsunami warning systems, education, and land use planning—can be put in place to save lives, property, and the livelihoods of those living on the coast.

Although the impact of the 2004 disaster on the global insurance industry was minimal, it alerted the world to the dangers of tsunami hazards. Worldwide response to the 2004 disaster resulted in the establishment of the Indian Ocean Tsunami Warning and Mitigation System in 2006.

Ten years hence, the world has seen two more earthquake-induced tsunami events—in the 2010 M8.8 Maule, Chile Earthquake and in the 2011 M9.0 Tohoku, Japan Earthquake—causing many clients to inquire where else in the world can events like these happen?

Chennai, India

9:30 a.m. local time

On the Indian peninsula, the hardest-hit areas were on India’s southeastern coast, in the state of Tamil Nadu, where close to 8,000 perished. Chennai, the capital of Tamil Nadu, has rebounded to become one of the Rockefeller Foundations’ “100 Resilient Cities” for its commitment to minimizing the impact of flooding in low-lying coastal areas and adopting a tsunami early warning system.

Just north of the earthquake’s epicenter, India’s Andaman and Nicobar islands were struck by waves reaching 4 to 15 m (13 to 50 ft) within 10 minutes of the earthquake. The death toll reached 7,000, with many more missing and presumed dead.

Distance from Epicenter

2,020 km

(1,260 mi)

Wave Height

5 m

(16 ft)

Time from initial rupture

3 hours

Banda Aceh, Indonesia

8:30 a.m. local time

The first wave reached Sumatra, Indonesia’s largest island, approximately 30 minutes after the initial rupture. Banda Aceh, the area hardest hit by the tsunami and closest major city to the earthquake’s epicenter, sustained more than 31,000 casualties in the city alone. Entire towns in the surrounding areas, some with populations of more than 10,000, vanished. More than 600,000 people in Aceh’s fishery and agricultural sectors lost their livelihoods.

Four times more women than men were killed—not just in Indonesia, but India and Sri Lanka as well—as many men were fishing, while women were on the beach, waiting for the fishermen to return, or at home, minding their children.

Distance from Epicenter

260 km

(160 mi)

Wave Height

30 m

(100 ft)

Time from initial rupture

30 min

Patong Beach, Thailand

9:30 a.m. local time

Tourism is one of Thailand’s key economic sectors, comprising about 12% of its overall GDP, with the greatest economic development along Thailand’s western coast. Khao Lak, Ko Phi Phi, and Phuket, with their pristine beaches, placid waters, and coral reefs, are among some of the most visited places on Earth. They were also the areas hit hardest by the tsunami.

The earthquake struck during the height of Thailand’s tourist season, causing close to 5,400 confirmed deaths, with many thousands more missing and presumed dead.

Distance from Epicenter

580 km

(360 mi)

Wave Height

6 m

(20 ft)

Time from initial rupture

1.5 hours

Galle Port, Sri Lanka

10:00 a.m. local time

Before the tsunami hit, elephants were observed running away from Patanangala beach in Yala National Park, directly in the tsunami’s path. Flamingos, goats, and buffaloes also moved to higher ground. All but two water buffaloes were unharmed.

When the waves came, Sri Lanka’s eastern and southern provinces were the hardest hit. In the coastal town of Telwatta, the tsunami struck an overcrowded train packed with passengers for the Buddhist full moon and Christmas holiday weekend. More than 1,700 lives were lost in what became the worst humanitarian disaster in railroad history.

Distance from Epicenter

1,750 km

(1,100 mi)

Wave Height

6 m

(20 ft)

Time from initial rupture

3 hours

Wave Height

6 m

(20 ft)

Northern Sumatra, West Coast

7:58 a.m. local time

The M9.1 earthquake struck 160 km (100 mi) off the northwest coast of Sumatra, Indonesia, generating the deadliest tsunami in history. With a rupture length of more than 1,200 km (750 mi), the earthquake released energy equivalent to 475 megatons of TNT, and shot a massive water column into the air.

The water settled back into the open ocean as a barely perceptible swell of only 50 cm (1.6 feet)—but moved at speeds of more than 600 km/hr (370 mph). It slowed toward the coast, inundating Sumatra with waves of up to 30 m (100 feet), leaving more than 225,000 people missing or presumed dead, and displacing 1.5 million more.

Countries impacted

14

Total insured losses

$1 billion

Total economic losses

$10 billion