Monthly Archives: July 2018

Five Years After Andreas: The Event That Changed the Severe Convective Storm Risk Landscape in Europe

July 2013, and Central Europe was just recovering from severe floods during May and June when a series of severe convective storms surprised the (re)insurance industry. On July 28, hailstorm Andreas hit the Stuttgart region in southern Germany, causing widespread damage to property and automobiles. Andreas is also especially remembered as hailstorm Bernd hit the north of Germany the day before on July 27.

Overall, those two events caused approximately US$4 billion in insured losses to the (re)insurance industry. This was the highest insured loss during 2013, and the largest severe convective storm insured loss ever recorded in Europe; above Munich in 1984 (equivalent to US$5.4 billion overall and US$2.7 billion insured loss in today’s value) and Hilal in 2008 (US$1.5 billion insured).

Continue reading

Five Reasons to Rethink Hurricane Risk

Challenging conventional thinking pays dividends with regards to assessing hurricane risk. And as the current North Atlantic Hurricane Season marches on, here are five points — some of which are insights from last year’s active season, that can help you to reframe and potentially rethink your view of hurricane risk.

1. Hurricane Threat Is Not Just from Wind or Storm Surge

In many respects, Hurricane Harvey was the standout hurricane from last year’s trio of notable events in Harvey, Irma and Maria. The severe amounts of rainfall from Harvey — more than fifty inches (127 cm) in some areas over southeast Texas in August 2017 — certainly differentiated this event.

In 2014, Robert Muir-Wood, chief research officer at RMS, wrote a blog posing the question whether  water, and not wind is the primary driver of hurricane risk and corresponding losses. With events like Harvey in 2017, Robert’s viewpoint becomes more and more valid. Although Harvey was a category 4 hurricane at landfall, around 90 percent of the estimated losses were from inland flooding. The dominance of flood-driven losses in recent events — whether they be caused by storm surge, precipitation, or both — argues for a full hurricane catastrophe modeling solution. If tropical cyclone-induced rainfall is not included as a modeled peril, there is every chance of missing a large contribution of total loss for events like Harvey.

Continue reading

Where Is Insurance in the Post-Grenfell Tower View of Fire Risk?

The first professionals on the stand in the Grenfell Tower Inquiry were the London Fire Brigade, quizzed on their lack of training around managing evacuation from the devastating tower block fire in North Kensington, West London on June 14, 2017. Coming soon, the inquiry’s focus will turn to the architects and fire engineers, the manufacturers of cladding material and the regulatory procedures for determining safety.

Yet, one actor conspicuously missing from this parade of experts is insurance.

You might think that insurance would, by now, be leading the agenda in calculating the fire risk to tower blocks and showing how mitigative action, such as removing or replacing flammable cladding, would directly convert into both lower risk and lower premiums. For this calculation around fire risk has the potential to drive other responses, including which buildings are too dangerous to be habitable.

Yet this calculation cannot come from empirical data on fire losses, as supports most actuarial fire pricing, because this fire is without precedent, at least in the U.K. Instead it will have to be the product of “large building” stochastic fire risk modeling.

Continue reading

Earthquakes and Tall Buildings: Any Changes for Modeling?

A recent article entitled “A Seismic Change in Predicting How Earthquakes Will Shake Tall Buildings” that appeared in the New York Times on June 27, has generated some concern regarding the performance of tall buildings during earthquakes. The article cites statements made during the eleventh U.S. National Conference on Earthquake Engineering — which several RMS earthquake engineering experts attended, stating that there are large changes being introduced to ground motion models. Ground motion models predict the intensity of ground shaking at a site.

Continue reading

RMS: Working for the Good of the Game

On November 13, 2015, the multiple terrorist attacks on Paris began with a suicide bomb blast at the 81,000 capacity Stade de France soccer stadium, where France were playing Germany in an international friendly. Soccer is the world’s most popular game, and terrorism is the language of being noticed. When France hosted the FIFA World Cup in 1998, Algerian terrorists planned to attack the opening match in Marseille between England and Tunisia, and follow-up by attacking the U.S. soccer team in their Paris hotel. Fortunately, a mole inside the Algerian terrorist organization passed on intelligence to the French security service, and the plot was disrupted.

Continue reading

Catastrophe Modeling: The Third Wave of Disruptive Technology

Catastrophe models, conceived in the 1970s and created at the end of the 1980s, have proved to be a “disruptive technology” in reshaping the catastrophe insurance and reinsurance sectors. The first wave of disruption saw the arrival of fresh capital, to found eight new “technical” Bermudan catastrophe reinsurers. The “Class of 1993” included Centre Cat Ltd., Global Capital Re, IPC Re, LaSalle Re, Mid-Ocean Re, Partner Re, Renaissance Re and Tempest Re. Using catastrophe models, these companies were able to set up shop and price hurricane and earthquake contracts without having decades of their own claims history. While only two of these companies survive as independent reinsurers, the legacy of the disruption of 1993 is Bermuda’s sustained dominance in global reinsurance.

A second wave of disruption starting in the mid-1990s saw the introduction of catastrophe bonds: a slow trickle at first but now a steady flow of new structures, as investors who knew nothing about catastrophic loss came to trust modeled risk estimates to establish the bond interest rates and default probabilities. Catastrophe bonds have subsequently undergone their own “Cambrian explosion” into a diverse set of insurance-linked securities (ILS) structures, including those in which the funds go back to supplement reinsurer’s capital. Again, this disruption in accessing novel sources of pension and investment fund capital would have been impossible without catastrophe loss models.

Continue reading

EXPOSURE: Assigning a Return Period to 2017

This is a taster of an article published in the latest edition of EXPOSURE magazine. For the full article click here or visit the EXPOSURE website.

Hurricanes Harvey, Irma and Maria (HIM) tore through the Caribbean and U.S. in 2017, resulting in insured losses over US$80 billion. Twelve years after Hurricanes Katrina, Rita and Wilma (KRW), EXPOSURE asks if the (re)insurance industry was better prepared for its next “terrible trio” and what lessons can be learned.

Continue reading