New Zealand’s Kaikoura Earthquake: What Have We Learned So Far About Damage?

The Kaikoura Earthquake of November 14 occurred in a relatively low population region of New Zealand, situated between Christchurch and Wellington. The largest town close to the epicentral region is Blenheim, with a population near 30,000.

Early damage reports indicate there has been structural damage in the northern part of the South Island as well as to numerous buildings in Wellington. While most of this has been caused directly by shaking, infrastructure and ports across the affected region have been heavily impacted by landsliding and, to a lesser extent, liquefaction. Landslides and slumps have occurred across the northeastern area of the South Island, most notably over Highway 1, severing land routes to Kaikoura – a popular tourist destination.

The picture of damage is still unfolding as access to badly affected areas improves. At RMS we have been comparing what we have learned from this earthquake to the view of risk provided by our new, high-definition New Zealand Earthquake model, which is designed to improve damage assessment and loss quantification at location-level resolution.

No Damage to Full Damage

The earthquake shook a relatively low population area of the South Island and, while it was felt keenly in Christchurch, there have been no reports of significant damage in the city. The earthquake ruptured approximately 150 km along the coast, propagating north towards Wellington. The capital experienced ground shaking intensities at the threshold for damage, producing façade and internal, non-structural damage in the central business district. Although the shaking intensities were close to those experienced during the Cook Strait sequence in 2013, which mostly affected short and mid-rise structures, the longer duration and frequency content of the larger magnitude Kaikoura event has caused more damage to taller structures which have longer natural periods.

From: Wellington City Council

Within Wellington, cordons are currently in place around a few buildings in the CBD (see above) as engineers carry out more detailed inspections. Some are being demolished or are set to be, including a nine-story structure on Molesworth Street and three city council buildings. It should be noted that most of the damage has been to buildings on reclaimed land close to the harbor where ground motions were likely amplified by the underlying sediments.

From: http://www.stuff.co.nz/national/86505695/quakehit-wellington-building-at-risk-of-collapse-holds-up-overnight; The building on Molesworth street before the earthquake (L) and on Tuesday (R).

From: http://www.stuff.co.nz/national/86505695/quakehit-wellington-building-at-risk-of-collapse-holds-up-overnight; The building on Molesworth street before the earthquake (L) and after on November 16 (R).

Isolated incidences of total damage in an area of otherwise minor damage demonstrate why RMS is moving to the new HD financial modeling framework. The RMS RiskLink approach applies a low mean damage ratio across the area, whereas RMS HD damage functions allow for zero or total loss – as well as a distribution in between which is sampled for each event for each location. The HD financial modeling framework is able to capture a more realistic pattern of gross losses.

Business Interruption

The Kaikoura Earthquake will produce business interruption losses from a variety of causes such as direct property or content damages, relocation costs, or loss of access to essential services (i.e. power and water utilities, information technology) that cripple operations in otherwise structurally sound buildings. How quickly businesses are able to recover depends on how quickly these utilities are restored. Extensive landslide damage to roads means access to Kaikoura itself will be restricted for months. The New Zealand government has announced financial assistance packages for small business to help them through the critical period immediately after the earthquake. Similar assistance was provided to businesses in Christchurch after the Canterbury Earthquake Sequence in 2010-2011.

That earthquake sequence and others around the world have provided valuable insights on business interruption, allowing our New Zealand Earthquake HD model to better capture these impacts. For example, during the Canterbury events, lifelines were found to be repaired much more quickly in urban areas than in rural areas, and areas susceptible to liquefaction were associated with longer down times due to greater damage to underground services. The new business interruption model provides a more accurate assessment of these risks by accounting for the influence of both property and contents damage as well as lifeline downtime.

It remains to be seen how significant any supply chain or contingent business interruption losses will be. Landslide damage to the main road and rail route from Christchurch to the inter-island ferry terminal at Picton has disrupted supply routes across the South Island. Alternative, longer routes with less capacity are available.

Next Generation Earthquake Modeling at RMS

RMS designed the update to its New Zealand Earthquake High Definition (HD) model, released in September 2016, to enhance location-level damage assessment and improve the gross loss quantification with a more realistic HD financial methodology. The model update was validated with billions of dollars of claims data from the 2010-11 Canterbury Earthquake Sequence.

Scientific and industry lessons learned following damaging earthquakes such as last month’s in Kaikoura and the earlier event in Christchurch increase the sophistication and realism of our understanding of earthquake risk, allowing communities and businesses to shift and adapt – so becoming more resilient to future catastrophic events.

Product Manager, Model Product Management
As a member of the Model Product Management team, Megan manages the development, delivery, and subject matter support of earthquake models. She is currently focused on the New Zealand Earthquake HD Model while managing the Europe Earthquake Model and global earthquake hazard data products. Megan holds a Bachelor’s of Science in geology from Bates College and the RMS Certified Catastrophe Risk Analyst (CCRA®) designation.

Leave a Reply

Your email address will not be published. Required fields are marked *