Monthly Archives: July 2016

How U.S. inland flood became a “peak” peril

This article by Jeff Waters, meteorologist and product manager at RMS, first appeared in Carrier Management.

As the journey towards a private flood insurance market progresses, (re)insurers can learn a lot from the recent U.S. flood events to help develop profitable flood risk management strategies.

Flood is the most pervasive and frequent peril in the U.S. Yet, despite having the world’s highest non-life premium volume and one of the highest insurance penetration rates, a significant protection gap still exists in the U.S. for this peril.

It is well-known that U.S. flood risk is primarily driven by tropical cyclone-related events, with storm surge being the main cause. In the last decade alone, flooding from tropical cyclones have caused more than $40 billion (2015 USD) in insured losses and contributed to today’s massive $23 billion National Flood Insurance Program (NFIP) deficit: 13 out of the top 15 flood events, determined by total NFIP payouts, were related to storm surge-driven coastal flooding from tropical cyclones.

Inland flooding, however, should not be overlooked. It too can contribute to a material portion of overall U.S. flood risk, as seen recently in the Southern Gulf, South Carolina, and in West Virginia, two areas impacted by major loss-causing events. These catastrophes caused billions in economic and insured losses while demonstrating the widespread impact caused by precipitation-driven fluvial (riverine) or pluvial (surface water) flooding. It is these types of flooding events that should be accounted for and well understood by (re)insurers looking to enter the private flood insurance market.

It hasn’t just rained; it has poured

In the past 15 months the U.S. has suffered several record-breaking or significant rainfall-induced inland flood events ….

To read the article in full, please click here.

A Perennial Debate: Disaster Planning versus Disaster Response

In May we saw a historic first: the World Humanitarian Summit. Held in Istanbul, representatives of 177 states attended. One UN chief summarised its mission thus: “a once-in-a-generation opportunity to set in motion an ambitious and far-reaching agenda to change the way that we alleviate, and most importantly prevent, the suffering of the world’s most vulnerable people.”

And in that sentence we find one of the enduring tensions within the disaster field: between “prevention” and “alleviation.” Between on the one hand reducing disaster risk through resilience-building investments, and on the other reducing suffering and loss through emergency response.

But in a world of constrained political budgets, where should we concentrate our energies and resources: disaster risk reduction or disaster response?

How to Close the Resilience Gap

The Istanbul summit saw a new global network launched to engage business in crisis situations through “pre-positioning supplies, meeting humanitarian needs and providing resources, knowledge and expertise to disaster prevention.” It is, of course, prudent to have stockpiles of humanitarian supplies strategically placed.

But is the dialogue still too focused on response? Could we not have hoped to see a greater emphasis on driving the disaster-resilient behaviours and investments, which reduce the reliance on emergency response in the first place?

Politics & Priorities

“Cost-effectiveness” is a concept with which humanitarian aid and governmental agencies have struggled over many years. But when it comes to building resilience, it is in fact possible to cost-justify the best course of action. After all, the insurance industry, piqued by the dual surprise of Hurricane Andrew and then the Northridge earthquake, has been using stochastic models to quantify and reduce catastrophe risk since the mid-1990s.

Unfortunately risk/reward analyses are rarely straightforward in practice. This is less a failing of the models to accurately characterise complex phenomena, though that certainly is a challenge. It’s more a question of politics.

It is harder for any government to argue that spending scarce public funds on building resilience in advance of a possible disaster is money well spent. By contrast, when disaster strikes and human suffering is writ large across the media, then there is a pressing political imperative to intervene. As a result many agencies sadly allocate more funds to disaster response than to disaster prevention, even though the analytics mostly suggest the opposite would be more beneficial.

A New, Ambitious form of Public Private Partnership

But there are signs that across the different strata of government the mood is changing. The cities of San Francisco and Berkeley, for example, have begun to use catastrophe models to quantify the cost of inaction and thereby drive risk-reducing investments. For San Francisco the focus has been on protecting the city’s economic and social wealth from future sea level rise. In Berkeley, resilience models have been deployed to shore-up critical infrastructure against the threat of earthquakes.

In May, RMS held the first international workshop on how resilience analytics can be used to manage urban resilience. Attended by public officials from several continents the engagement in the topic was very high.

The role of resilience analytics to help design, implement, and measure resilience strategies was emphasized by Arnoldo Kramer, the first Chief Resilience Officer (CRO) of the largest city in the western hemisphere, Mexico City. The workshop discussion went further than just explaining how these models can be used to quantify the potential, risk-adjusted return on investment from resilience initiatives. The group stressed the role of resilience metrics in helping cities finance capital investments in new, protective infrastructure.

Stimulated by commitments under the Sendai Framework to work more closely with the private sector, lower income regions are also increasingly benefiting from such techniques – not just to inform disaster response, but also to finance the reduction of disaster risk in the first place. Indeed there are encouraging signs that these two different worlds are beginning to understand each other better. At the inaugural working group meeting of the Insurance Development Forum in Singapore last month there was a productive dialogue between the UN Development Programme and the risk transfer industry. It was clear that both sides wanted action, not just words.

Such initiatives can only serve to accelerate the incorporation of resilience analytics into existing disaster risk reduction programmes. This may be a once-in-a-generation opportunity to address the shameful gap between the economic costs of natural disasters and the fraction of those costs that are insured.

We cannot prevent natural disasters from happening. But neither can we continue to afford to spend billions of dollars picking up the pieces when they strike. I am hopeful that we will take this opportunity to bring resilience analytics into under-served societies, making them tougher, more resilient, so that when catastrophe strikes, the impact is lessened and societies can bounce back far more readily.

Using Insurance Claims Data to Drive Resilience

When disaster strikes for homeowners and businesses the insurance industry is a source of funds to pick up the pieces and carry on. In that way the industry provides an immediate benefit to society. But can insurers play an extended role in helping to reduce the risks for which they provide cover, to make society more resilient to the next disaster?

Insurers collect far more detailed and precise information on property damage than any other public sector or private organisation. Such claims data can provide deep insights into what determines damage – whether it’s the vulnerability of a particular building type or the fine scale structure of flood hazard.

While the data derived from claims experience helps insurers to price and manage their risk, it has not been possible to apply this data to reduce the potential for damage itself – but that is changing.

At a recent Organisation for Economic Co-operation and Development meeting in Paris on flood risk insurance we discussed new initiatives in Norway, France and Australia that harness and apply insurers’ claims experience to inform urban resilience strategies.

Norway Claims Data Improves Flood Risk

In Norway the costs of catastrophes are pooled across private insurance companies, making it the norm for insurers to share their claims data with the Natural Perils Pool. Norwegian insurers have collaborated to make the sharing process more efficient, agreeing a standardized approach in 2008 to address-level exposure and claims classifications covering all private, commercial and public buildings. Once the classifications were consistent it became clear that almost 70% of flood claims were driven by urban flooding from heavy rainfall.

Starting with a pilot of ten municipalities, including the capital Oslo, a group funded by the Norwegian finance and insurance sector took this address-level data to the city authorities to show exactly where losses were concentrated, so that the city engineer could identify and implement remedial actions: whether through larger storm drains or flood walls. As a result flood claims are being reduced.

French Observatory Applies Lessons Learned from Claims Data

Another example is from France, where natural catastrophe losses are refunded through the national ‘Cat Nat System’. Property insureds pay an extra 12% premium to be covered. All the claims data generated in this process now gets passed to the national Observatory of Natural Risks, set up after Storm Xynthia in 2010. This unit employs the data to perform forensic investigations to identify what can be learnt about the claims and then works with municipalities to see how to apply these lessons to reduce future losses. The French claims experience is not as comprehensive as in Norway because such data only gets collected when the state declares there has been a ‘Cat Nat event’  – which excludes some of the smaller and local losses that fail to reach the threshold of political attention.

Australian Insurers Forced Council to Act on Their Claims Data

In Australia sharing claims data with a city council was the result of a provocative action by insurers which were frustrated by the political pressure to offer universal flood insurance following the major floods in 2011.  Roma, a town in Queensland, had been inundated five times in six years – insurers mapped and published the addresses of the properties that had been repeatedly flooded and refused to renew the insurance cover unless action was taken. The insurers’ campaign achieved its goal, pressuring the local council to fund flood alleviation measures across the town.

These examples highlight how insurers can help cities identify where their investments will accomplish the most cost-effective risk reduction. All that’s needed is an appetite to find ways to process and deliver claims data in a format that provides the key insights that city bosses need, without compromising concerns around confidentiality or privacy.

This is another exciting application in the burgeoning new field of resilience analytics.

The Rising Cost of Hurricanes – and America’s Ability to Pay

Future hurricanes are going to cost the U.S. more money and, if we don’t act to address this, it will leave the government struggling to cope. That is the finding of a recent Congressional Budget Office (CBO) report which put it starkly:

“…over time, the costs associated with hurricane damage will increase more rapidly than the economy will grow. Consequently, hurricane damage will rise as a share of gross domestic product (GDP)…”

The CBO identified two core drivers for the escalating costs: climate change, which will drive just under half of the potential increases in hurricane damages while just over half of damages will come from coastal development. The four main four variables that would have the most impact were identified as:

  • Changes in sea levels for different U.S. states;
  • changes in the frequency of hurricanes of various intensities;
  • population growth in coastal areas, and;
  • per capita income in coastal areas.

Using Catastrophe Models to Calculate the Future Cost of Hurricanes

To inform the CBO’s research and creation of a range of possible hurricane scenarios based on future changes to the four key variables, RMS hurricane and storm surge risk experts provided the CBO with data from the RMS North Atlantic Hurricane Model and Storm Surge Model.

Through RMS’ previous work with the Risky Business Initiative we were able to provide state specific “damage functions” which were used to translate possible future hurricane events, state-specific sea levels and current property exposure into expected damaged. While we usually produce loss estimates for catastrophes, we didn’t provide the CBO with estimated losses ourselves – rather we built a tool so the CBO could “own” its own assumptions about changes in all the factors – a critical aspect of the CBO’s need to remain impartial and objective.

Solutions to Increase Coastal Urban Resilience

The CBO’s report includes suggested policies that could decrease the pressure on federal spending. The polices range from global initiatives to limit greenhouse gas emissions to more direct mechanisms that could shift costs to state and local governments and private entities, as well as investing in structural changes to reduce vulnerabilities. Such approaches bring to the forefront the role of local resilience in tackling a global problem.

However, therein lies the challenge. Many of the options open to society to increase resiliency against catastrophes, could have a less positive effect on the economy. It’s an issue that has been central to the wider debate about reducing the impacts of climate change. Limiting greenhouse gas emissions has direct effects on the oil and gas industry.  Likewise, curbing coastal development impacts developers and local economies. It has led states such as North Carolina to ban the use of future sea level rise projections as the basis for policies on coastal development.

Overcoming Political Resistance

Creating resiliency in U.S. towns and communities needs to be a multi-faceted effort. While initiatives to fortify the building stock and curb global climate change and sea level rise are moving ahead there is strong resistance from the political arena.  To overcome the resistance, solutions to transition the economy to new forms of energy must be found, as well as ways to adapt the current workforce to the jobs of the future. City leaders and developers should partner to find sustainable growth initiatives for urban growth, to ease the fears that coastal cities will wither and die under new coastal use restrictions.

Initiating these conversations will go a long way to removing the barriers to success in curbing greenhouse gas emissions and limiting coastal growth. With an already polarised political debate on climate change this CBO report may provoke further controversy about how to deal with the factors behind the increase in future hurricane damage costs. Though one conclusion is inescapable: catastrophe losses are going up and we will all be footing the bill.

This post was co-authored by Paul Wilson and Matthew Nielsen.

Matthew Nielsen

Senior Director of Global Governmental and Regulatory Affairs, RMS

Matthew Nielsen leads Governmental and Regulatory Affairs. He is responsible for maintaining relationships with regulators, legislators, and rating agencies on behalf of the company to establish open channels of communication around RMS models and solutions. Matthew is a meteorologist and geographer with extensive experience in North American catastrophe risk. In his prior role at RMS, he was responsible for developing the RMS climate peril models for the Americas, including the severe convective storm, winter storm, flood, and hurricane models. He has conducted field reconnaissance for major catastrophes including Hurricanes Katrina and Sandy. Before joining RMS, Matthew conducted remote sensing in satellite meteorology research at the Cooperative Institute for Research in the Atmosphere (CIRA). He holds a BS in physics from Ripon College, where he won the Henry Knop Award in Physics, and an MS in atmospheric science from Colorado State University. Matthew is a member of the American Meteorological Society (AMS), the International Society of Catastrophe Managers (ISCM), and the American Association of Geographers (AAG).

Euro 2016: France inundated by fans and floods

This week the final knockout rounds of Euro 2016 take place in France. Sadly, England has long since left the country and the tournament, largely due to some inept displays. But more miserable than England’s performance, was the weather at the start of the tournament, which caused concern in the capital as intense precipitation on top of an already saturated France, led to severe flooding.

Some areas of the country experienced the worst flooding they have seen in a century, with the floods across eastern and central France declared a natural disaster by French President François Hollande. River levels in the Seine were at their highest in nearly 35 years, impacting Paris, and leading to three of the capital’s best-known museums — the Louvre, the Grand Palais, and Orsay —closing their doors to the public, as staff moved priceless works of art to the safety of higher floors.

Source: The Guardian

There were also concerns surrounding how the flooding could impact the tournament. However, as you can see in the below image, which represents the RMS 1,000 year inland flood hazard extent, neither of the two stadia located in France’s capital (yellow markers) were really at any risk of flooding. The same can’t be said for the fan zone adjacent to the Eiffel Tower though (red marker). Continued intense rainfall, would have led to increased flood severity, meaning that 90,000 or so fans would have been in need of their waders.

Stade de France and Parc des Princes (yellow markers); Paris Fan Zone (red marker)

Paris wasn’t the only location in France to be impacted by the floods though; further south the town of Nemours observed severe flooding as the River Loing burst its banks. While devastating to the local community, this severity of flooding can be expected in the town. The RMS Europe Inland Flood maps demonstrate such flooding for events in excess of the 50 year return period, but as the below image of the 200 year flood extent demonstrates, the flooding could have been even more severe.

Rue de Paris, Nemours (yellow marker) and Château-Musée de Nemours (red marker)

The flooding in Nemours is a good example of why it is so important to understand the standard of protection offered by local flood defenses, in order to fully understand flood risk. The RMS Europe Inland Flood models and maps explicitly represent the impact of flood defenses and provide some noteworthy insights into the potential exposure at risk, if the standard of protection is not maintained or local flood defenses are overtopped.

Rue de Paris, Nemours. Source: The Guardian

If we removed all flood defenses and consider a 100 year return period level of flood hazard across France, the RMS analyses estimate that over €600 billion of insured exposure is at risk to flood damage. However, approximately 40 percent of this exposure at risk is protected against such levels of hazard by local flood defenses.

Source: Château-Musée de Nemours

And in the largest exposure concentrations, such as Paris and its surrounding area, the importance of local defenses is even more prominent. Looking at a similar 100 year return period level of flood hazard in this region, almost €60 billion of insured exposure would be at risk of flooding, but approximately 90 percent of that exposure is protected against this level of hazard.

Flood can be thought of as a polar peril; if you’re in the extent of a flood event, the costs are high but if you’re on the edge then you’re safe. And for this reason, an understanding of the impact of flood defenses is vital, because if they breach or become overtopped, the losses can be high. Knowing where exposure is protected allows you to write business smartly in higher risk zones. But understanding the hazard, should defenses fail, is also vital, enabling a more informed understanding of severe flood risk and its associated uncertainties.

This post was co-authored by Rachael Whitford and Adrian Mark.